Jinyuan Jia


2024

pdf bib
Jailbreak Open-Sourced Large Language Models via Enforced Decoding
Hangfan Zhang | Zhimeng Guo | Huaisheng Zhu | Bochuan Cao | Lu Lin | Jinyuan Jia | Jinghui Chen | Dinghao Wu
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Large Language Models (LLMs) have achieved unprecedented performance in Natural Language Generation (NLG) tasks. However, many existing studies have shown that they could be misused to generate undesired content. In response, before releasing LLMs for public access, model developers usually align those language models through Supervised Fine-Tuning (SFT) or Reinforcement Learning with Human Feedback (RLHF). Consequently, those aligned large language models refuse to generate undesired content when facing potentially harmful/unethical requests. A natural question is “could alignment really prevent those open-sourced large language models from being misused to generate undesired content?”. In this work, we provide a negative answer to this question. In particular, we show those open-sourced, aligned large language models could be easily misguided to generate undesired content without heavy computations or careful prompt designs. Our key idea is to directly manipulate the generation process of open-sourced LLMs to misguide it to generate undesired content including harmful or biased information and even private data. We evaluate our method on 4 open-sourced LLMs accessible publicly and our finding highlights the need for more advanced mitigation strategies for open-sourced LLMs.

pdf bib
SafeDecoding: Defending against Jailbreak Attacks via Safety-Aware Decoding
Zhangchen Xu | Fengqing Jiang | Luyao Niu | Jinyuan Jia | Bill Yuchen Lin | Radha Poovendran
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

As large language models (LLMs) become increasingly integrated into real-world applications such as code generation and chatbot assistance, extensive efforts have been made to align LLM behavior with human values, including safety. Jailbreak attacks, which aim to provoke unintended and unsafe behaviors from LLMs, remain a significant LLM safety threat. We analyze tokens, which are the smallest unit of text that can be processed by LLMs and make the following observations: (1) probabilities of tokens representing harmful responses are higher than those of harmless responses, and (2) responses containing safety disclaimers appear among the top tokens when token probabilities are sorted in descending order. In this paper, we leverage (1) and (2) to develop SafeDecoding, a safety-aware decoding strategy for LLMs, to defend against jailbreak attacks. We perform extensive experiments to evaluate SafeDecoding against six SOTA jailbreak attacks (GCG, AutoDAN, PAIR, DeepInception, SAP30, and template based attack) on five LLMs (Vicuna, Llama2, Guanaco, falcon, and Dolphin) using four benchmark datasets (AdvBench, HEx-PHI, MT-Bench, and Just-Eval). Our results show that SafeDecoding significantly reduces attack success rate and harmfulness of jailbreak attacks without compromising the helpfulness of responses to benign user queries while outperforming six defense methods (Perpelexity, Paraphrase, Retokenization, Self-Reminder, ICD, and Self-Examination).