Jiong Cai


2023

pdf bib
Improving Low-resource Named Entity Recognition with Graph Propagated Data Augmentation
Jiong Cai | Shen Huang | Yong Jiang | Zeqi Tan | Pengjun Xie | Kewei Tu
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Data augmentation is an effective solution to improve model performance and robustness for low-resource named entity recognition (NER). However, synthetic data often suffer from poor diversity, which leads to performance limitations. In this paper, we propose a novel Graph Propagated Data Augmentation (GPDA) framework for Named Entity Recognition (NER), leveraging graph propagation to build relationships between labeled data and unlabeled natural texts. By projecting the annotations from the labeled text to the unlabeled text, the unlabeled texts are partially labeled, which has more diversity rather than synthetic annotated data. To strengthen the propagation precision, a simple search engine built on Wikipedia is utilized to fetch related texts of labeled data and to propagate the entity labels to them in the light of the anchor links. Besides, we construct and perform experiments on a real-world low-resource dataset of the E-commerce domain, which will be publicly available to facilitate the low-resource NER research. Experimental results show that GPDA presents substantial improvements over previous data augmentation methods on multiple low-resource NER datasets.

pdf bib
DAMO-NLP at SemEval-2023 Task 2: A Unified Retrieval-augmented System for Multilingual Named Entity Recognition
Zeqi Tan | Shen Huang | Zixia Jia | Jiong Cai | Yinghui Li | Weiming Lu | Yueting Zhuang | Kewei Tu | Pengjun Xie | Fei Huang | Yong Jiang
Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)

The MultiCoNER II shared task aims to tackle multilingual named entity recognition (NER) in fine-grained and noisy scenarios, and it inherits the semantic ambiguity and low-context setting of the MultiCoNER I task. To cope with these problems, the previous top systems in the MultiCoNER I either incorporate the knowledge bases or gazetteers. However, they still suffer from insufficient knowledge, limited context length, single retrieval strategy. In this paper, our team DAMO-NLP proposes a unified retrieval-augmented system (U-RaNER) for fine-grained multilingual NER. We perform error analysis on the previous top systems and reveal that their performance bottleneck lies in insufficient knowledge. Also, we discover that the limited context length causes the retrieval knowledge to be invisible to the model. To enhance the retrieval context, we incorporate the entity-centric Wikidata knowledge base, while utilizing the infusion approach to broaden the contextual scope of the model. Also, we explore various search strategies and refine the quality of retrieval knowledge. Our system wins 9 out of 13 tracks in the MultiCoNER II shared task. Additionally, we compared our system with ChatGPT, one of the large language models which have unlocked strong capabilities on many tasks. The results show that there is still much room for improvement for ChatGPT on the extraction task.

2022

pdf bib
Named Entity and Relation Extraction with Multi-Modal Retrieval
Xinyu Wang | Jiong Cai | Yong Jiang | Pengjun Xie | Kewei Tu | Wei Lu
Findings of the Association for Computational Linguistics: EMNLP 2022

Multi-modal named entity recognition (NER) and relation extraction (RE) aim to leverage relevant image information to improve the performance of NER and RE. Most existing efforts largely focused on directly extracting potentially useful information from images (such as pixel-level features, identified objects, and associated captions).However, such extraction processes may not be knowledge aware, resulting in information that may not be highly relevant.In this paper, we propose a novel Multi-modal Retrieval based framework (MoRe).MoRe contains a text retrieval module and an image-based retrieval module, which retrieve related knowledge of the input text and image in the knowledge corpus respectively.Next, the retrieval results are sent to the textual and visual models respectively for predictions.Finally, a Mixture of Experts (MoE) module combines the predictions from the two models to make the final decision.Our experiments show that both our textual model and visual model can achieve state-of-the-art performance on four multi-modal NER datasets and one multi-modal RE dataset.With MoE, the model performance can be further improved and our analysis demonstrates the benefits of integrating both textual and visual cues for such tasks.

pdf bib
DAMO-NLP at SemEval-2022 Task 11: A Knowledge-based System for Multilingual Named Entity Recognition
Xinyu Wang | Yongliang Shen | Jiong Cai | Tao Wang | Xiaobin Wang | Pengjun Xie | Fei Huang | Weiming Lu | Yueting Zhuang | Kewei Tu | Wei Lu | Yong Jiang
Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)

The MultiCoNER shared task aims at detecting semantically ambiguous and complex named entities in short and low-context settings for multiple languages. The lack of contexts makes the recognition of ambiguous named entities challenging. To alleviate this issue, our team DAMO-NLP proposes a knowledge-based system, where we build a multilingual knowledge base based on Wikipedia to provide related context information to the named entity recognition (NER) model. Given an input sentence, our system effectively retrieves related contexts from the knowledge base. The original input sentences are then augmented with such context information, allowing significantly better contextualized token representations to be captured. Our system wins 10 out of 13 tracks in the MultiCoNER shared task.

2020

pdf bib
An Empirical Comparison of Unsupervised Constituency Parsing Methods
Jun Li | Yifan Cao | Jiong Cai | Yong Jiang | Kewei Tu
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Unsupervised constituency parsing aims to learn a constituency parser from a training corpus without parse tree annotations. While many methods have been proposed to tackle the problem, including statistical and neural methods, their experimental results are often not directly comparable due to discrepancies in datasets, data preprocessing, lexicalization, and evaluation metrics. In this paper, we first examine experimental settings used in previous work and propose to standardize the settings for better comparability between methods. We then empirically compare several existing methods, including decade-old and newly proposed ones, under the standardized settings on English and Japanese, two languages with different branching tendencies. We find that recent models do not show a clear advantage over decade-old models in our experiments. We hope our work can provide new insights into existing methods and facilitate future empirical evaluation of unsupervised constituency parsing.

pdf bib
Semi-Supervised Semantic Dependency Parsing Using CRF Autoencoders
Zixia Jia | Youmi Ma | Jiong Cai | Kewei Tu
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Semantic dependency parsing, which aims to find rich bi-lexical relationships, allows words to have multiple dependency heads, resulting in graph-structured representations. We propose an approach to semi-supervised learning of semantic dependency parsers based on the CRF autoencoder framework. Our encoder is a discriminative neural semantic dependency parser that predicts the latent parse graph of the input sentence. Our decoder is a generative neural model that reconstructs the input sentence conditioned on the latent parse graph. Our model is arc-factored and therefore parsing and learning are both tractable. Experiments show our model achieves significant and consistent improvement over the supervised baseline.

pdf bib
Deep Inside-outside Recursive Autoencoder with All-span Objective
Ruyue Hong | Jiong Cai | Kewei Tu
Proceedings of the 28th International Conference on Computational Linguistics

Deep inside-outside recursive autoencoder (DIORA) is a neural-based model designed for unsupervised constituency parsing. During its forward computation, it provides phrase and contextual representations for all spans in the input sentence. By utilizing the contextual representation of each leaf-level span, the span of length 1, to reconstruct the word inside the span, the model is trained without labeled data. In this work, we extend the training objective of DIORA by making use of all spans instead of only leaf-level spans. We test our new training objective on datasets of two languages: English and Japanese, and empirically show that our method achieves improvement in parsing accuracy over the original DIORA.

2017

pdf bib
CRF Autoencoder for Unsupervised Dependency Parsing
Jiong Cai | Yong Jiang | Kewei Tu
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

Unsupervised dependency parsing, which tries to discover linguistic dependency structures from unannotated data, is a very challenging task. Almost all previous work on this task focuses on learning generative models. In this paper, we develop an unsupervised dependency parsing model based on the CRF autoencoder. The encoder part of our model is discriminative and globally normalized which allows us to use rich features as well as universal linguistic priors. We propose an exact algorithm for parsing as well as a tractable learning algorithm. We evaluated the performance of our model on eight multilingual treebanks and found that our model achieved comparable performance with state-of-the-art approaches.