Jiwen Zhang
2024
Android in the Zoo: Chain-of-Action-Thought for GUI Agents
Jiwen Zhang
|
Jihao Wu
|
Teng Yihua
|
Minghui Liao
|
Nuo Xu
|
Xiao Xiao
|
Zhongyu Wei
|
Duyu Tang
Findings of the Association for Computational Linguistics: EMNLP 2024
Large language model (LLM) leads to a surge of autonomous GUI agents for smartphone, which completes a task triggered by natural language through predicting a sequence of actions of API. Even though the task highly relies on past actions and visual observations, existing studies typically consider little semantic information carried out by intermediate screenshots and screen operations. To address this, this work presents Chain-of-Action-Thought (dubbed CoAT), which takes the description of the previous actions, the current screen, and more importantly the action thinking of what actions should be performed and the outcomes led by the chosen action. We demonstrate that, in a zero-shot setting upon three off-the-shelf LMMs, CoAT significantly improves the action prediction compared to previous proposed context modeling. To further facilitate the research in this line, we construct a dataset Android-In-The-Zoo (AitZ), which contains 18,643 screen-action pairs together with chain-of-action-thought annotations. Experiments show that fine-tuning a 1B model (i.e. AUTO-UI-base) on our AitZ dataset achieves on-par performance with CogAgent-Chat-18B.
DELAN: Dual-Level Alignment for Vision-and-Language Navigation by Cross-Modal Contrastive Learning
Mengfei Du
|
Binhao Wu
|
Jiwen Zhang
|
Zhihao Fan
|
Zejun Li
|
Ruipu Luo
|
Xuanjing Huang
|
Zhongyu Wei
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
Vision-and-Language navigation (VLN) requires an agent to navigate in unseen environment by following natural language instruction. For task completion, the agent needs to align and integrate various navigation modalities, including instruction, observation and navigation history. Existing works primarily concentrate on cross-modal attention at the fusion stage to achieve this objective. Nevertheless, modality features generated by disparate uni-encoders reside in their own spaces, leading to a decline in the quality of cross-modal fusion and decision. To address this problem, we propose a Dual-levEL AligNment (DELAN) framework by cross-modal contrastive learning. This framework is designed to align various navigation-related modalities before fusion, thereby enhancing cross-modal interaction and action decision-making. Specifically, we divide the pre-fusion alignment into dual levels: instruction-history level and landmark-observation level according to their semantic correlations. We also reconstruct a dual-level instruction for adaptation to the dual-level alignment. As the training signals for pre-fusion alignment are extremely limited, self-supervised contrastive learning strategies are employed to enforce the matching between different modalities. Our approach seamlessly integrates with the majority of existing models, resulting in improved navigation performance on various VLN benchmarks, including R2R, R4R, RxR and CVDN.
Search
Fix data
Co-authors
- Zhongyu Wei (魏忠钰) 2
- Mengfei Du 1
- Zhihao Fan 1
- Xuan-Jing Huang (黄萱菁) 1
- Zejun Li 1
- show all...