Joe Stacey


2022

pdf bib
Logical Reasoning with Span-Level Predictions for Interpretable and Robust NLI Models
Joe Stacey | Pasquale Minervini | Haim Dubossarsky | Marek Rei
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Current Natural Language Inference (NLI) models achieve impressive results, sometimes outperforming humans when evaluating on in-distribution test sets. However, as these models are known to learn from annotation artefacts and dataset biases, it is unclear to what extent the models are learning the task of NLI instead of learning from shallow heuristics in their training data.We address this issue by introducing a logical reasoning framework for NLI, creating highly transparent model decisions that are based on logical rules. Unlike prior work, we show that improved interpretability can be achieved without decreasing the predictive accuracy. We almost fully retain performance on SNLI, while also identifying the exact hypothesis spans that are responsible for each model prediction.Using the e-SNLI human explanations, we verify that our model makes sensible decisions at a span level, despite not using any span labels during training. We can further improve model performance and the span-level decisions by using the e-SNLI explanations during training. Finally, our model is more robust in a reduced data setting. When training with only 1,000 examples, out-of-distribution performance improves on the MNLI matched and mismatched validation sets by 13% and 16% relative to the baseline. Training with fewer observations yields further improvements, both in-distribution and out-of-distribution.

2020

pdf bib
Avoiding the Hypothesis-Only Bias in Natural Language Inference via Ensemble Adversarial Training
Joe Stacey | Pasquale Minervini | Haim Dubossarsky | Sebastian Riedel | Tim Rocktäschel
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Natural Language Inference (NLI) datasets contain annotation artefacts resulting in spurious correlations between the natural language utterances and their respective entailment classes. These artefacts are exploited by neural networks even when only considering the hypothesis and ignoring the premise, leading to unwanted biases. Belinkov et al. (2019b) proposed tackling this problem via adversarial training, but this can lead to learned sentence representations that still suffer from the same biases. We show that the bias can be reduced in the sentence representations by using an ensemble of adversaries, encouraging the model to jointly decrease the accuracy of these different adversaries while fitting the data. This approach produces more robust NLI models, outperforming previous de-biasing efforts when generalised to 12 other NLI datasets (Belinkov et al., 2019a; Mahabadi et al., 2020). In addition, we find that the optimal number of adversarial classifiers depends on the dimensionality of the sentence representations, with larger sentence representations being more difficult to de-bias while benefiting from using a greater number of adversaries.