We explore computational methods for perceived agency attribution in natural language data. We consider ‘agency’ as the freedom and capacity to act, and the corresponding Natural Language Processing (NLP) task involves automatically detecting attributions of agency to entities in text. Our theoretical framework draws on semantic frame analysis, role labelling and related techniques. In initial experiments, we focus on the perceived agency of AI systems. To achieve this, we analyse a dataset of English-language news coverage of AI-related topics, published within one year surrounding the release of the Large Language Model-based service ChatGPT, a milestone in the general public’s awareness of AI. Building on this, we propose a schema to annotate a dataset for agency attribution and formulate additional research questions to answer by applying NLP models.
Graph-based semantic representations are popular in natural language processing, where it is often convenient to model linguistic concepts as nodes and relations as edges between them. Several attempts have been made to find a generative device that is sufficiently powerful to describe languages of semantic graphs, while at the same allowing efficient parsing. We contribute to this line of work by introducing graph extension grammar, a variant of the contextual hyperedge replacement grammars proposed by Hoffmann et al. Contextual hyperedge replacement can generate graphs with non-structural reentrancies, a type of node-sharing that is very common in formalisms such as abstract meaning representation, but that context-free types of graph grammars cannot model. To provide our formalism with a way to place reentrancies in a linguistically meaningful way, we endow rules with logical formulas in counting monadic second-order logic. We then present a parsing algorithm and show as our main result that this algorithm runs in polynomial time on graph languages generated by a subclass of our grammars, the so-called local graph extension grammars.
We show that a previously proposed algorithm for the N-best trees problem can be made more efficient by changing how it arranges and explores the search space. Given an integer N and a weighted tree automaton (wta) M over the tropical semiring, the algorithm computes N trees of minimal weight with respect to M. Compared with the original algorithm, the modifications increase the laziness of the evaluation strategy, which makes the new algorithm asymptotically more efficient than its predecessor. The algorithm is implemented in the software Betty, and compared to the state-of-the-art algorithm for extracting the N best runs, implemented in the software toolkit Tiburon. The data sets used in the experiments are wtas resulting from real-world natural language processing tasks, as well as artificially created wtas with varying degrees of nondeterminism. We find that Betty outperforms Tiburon on all tested data sets with respect to running time, while Tiburon seems to be the more memory-efficient choice.
There is a growing consensus that surface form alone does not enable models to learn meaning and gain language understanding. This warrants an interest in hybrid systems that combine the strengths of neural and symbolic methods. We favour triadic systems consisting of neural networks, knowledge bases, and inference engines. The network provides perception, that is, the interface between the system and its environment. The knowledge base provides explicit memory and thus immediate access to established facts. Finally, inference capabilities are provided by the inference engine which reflects on the perception, supported by memory, to reason and discover new facts. In this work, we probe six popular language models for semantic relations and outline a future line of research to study how the constituent subsystems can be jointly realised and integrated.
Semantic embeddings have advanced the state of the art for countless natural language processing tasks, and various extensions to multimodal domains, such as visual-semantic embeddings, have been proposed. While the power of visual-semantic embeddings comes from the distillation and enrichment of information through machine learning, their inner workings are poorly understood and there is a shortage of analysis tools. To address this problem, we generalize the notion ofprobing tasks to the visual-semantic case. To this end, we (i) discuss the formalization of probing tasks for embeddings of image-caption pairs, (ii) define three concrete probing tasks within our general framework, (iii) train classifiers to probe for those properties, and (iv) compare various state-of-the-art embeddings under the lens of the proposed probing tasks. Our experiments reveal an up to 16% increase in accuracy on visual-semantic embeddings compared to the corresponding unimodal embeddings, which suggest that the text and image dimensions represented in the former do complement each other.
We propose a formal model for translating unranked syntactic trees, such as dependency trees, into semantic graphs. These tree-to-graph transducers can serve as a formal basis of transition systems for semantic parsing which recently have been shown to perform very well, yet hitherto lack formalization. Our model features “extended” rules and an arc-factored normal form, comes with an efficient translation algorithm, and can be equipped with weights in a straightforward manner.