John Cadigan
2022
Valet: Rule-Based Information Extraction for Rapid Deployment
Dayne Freitag
|
John Cadigan
|
Robert Sasseen
|
Paul Kalmar
Proceedings of the Thirteenth Language Resources and Evaluation Conference
We present VALET, a framework for rule-based information extraction written in Python. VALET departs from legacy approaches predicated on cascading finite-state transducers, instead offering direct support for mixing heterogeneous information–lexical, orthographic, syntactic, corpus-analytic–in a succinct syntax that supports context-free idioms. We show how a handful of rules suffices to implement sophisticated matching, and describe a user interface that facilitates exploration for development and maintenance of rule sets. Arguing that rule-based information extraction is an important methodology early in the development cycle, we describe an experiment in which a VALET model is used to annotate examples for a machine learning extraction model. While learning to emulate the extraction rules, the resulting model generalizes them, recognizing valid extraction targets the rules failed to detect.
Accelerating Human Authorship of Information Extraction Rules
Dayne Freitag
|
John Cadigan
|
John Niekrasz
|
Robert Sasseen
Proceedings of the First Workshop on Pattern-based Approaches to NLP in the Age of Deep Learning
We consider whether machine models can facilitate the human development of rule sets for information extraction. Arguing that rule-based methods possess a speed advantage in the early development of new extraction capabilities, we ask whether this advantage can be increased further through the machine facilitation of common recurring manual operations in the creation of an extraction rule set from scratch. Using a historical rule set, we reconstruct and describe the putative manual operations required to create it. In experiments targeting one key operation—the enumeration of words occurring in particular contexts—we simulate the process or corpus review and word list creation, showing that several simple interventions greatly improve recall as a function of simulated labor.