John Morris


2023

pdf bib
Tree Prompting: Efficient Task Adaptation without Fine-Tuning
Chandan Singh | John Morris | Alexander Rush | Jianfeng Gao | Yuntian Deng
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Prompting language models (LMs) is the main interface for applying them to new tasks. However, for smaller LMs, prompting provides low accuracy compared to gradient-based fine-tuning. Tree Prompting is an approach to prompting which builds a decision tree of prompts, linking multiple prompt-LM calls together to solve a task. At inference time, each call to the LM is determined by efficiently routing the outcome of the previous call using the tree. Experiments on classification datasets show that Tree Prompting improves accuracy over competing methods and is competitive with fine-tuning. We also show that variants of Tree Prompting allow inspection of a model’s decision-making process.

pdf bib
Text Embeddings Reveal (Almost) As Much As Text
John Morris | Volodymyr Kuleshov | Vitaly Shmatikov | Alexander Rush
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

How much private information do text embeddings reveal about the original text? We investigate the problem of embedding inversion, reconstructing the full text represented in dense text embeddings. We frame the problem as controlled generation: generating text that, when reembedded, is close to a fixed point in latent space. We find that although a naive model conditioned on the embedding performs poorly, a multi-step method that iteratively corrects and re-embeds text is able to recover 92% of 32-token text inputs exactly. We train our model to decode text embeddings from two state-of-the-art embedding models, and also show that our model can recover important personal information (full names) from a dataset of clinical notes.

2022

pdf bib
Unsupervised Text Deidentification
John Morris | Justin Chiu | Ramin Zabih | Alexander Rush
Findings of the Association for Computational Linguistics: EMNLP 2022

Deidentification seeks to anonymize textual data prior to distribution. Automatic deidentification primarily uses supervised named entity recognition from human-labeled data points. We propose an unsupervised deidentification method that masks words that leak personally-identifying information. The approach utilizes a specially trained reidentification model to identify individuals from redacted personal documents. Motivated by K-anonymity based privacy, we generate redactions that ensure a minimum reidentification rank for the correct profile of the document. To evaluate this approach, we consider the task of deidentifying Wikipedia Biographies, and evaluate using an adversarial reidentification metric. Compared to a set of unsupervised baselines, our approach deidentifies documents more completely while removing fewer words. Qualitatively, we see that the approach eliminates many identifying aspects that would fall outside of the common named entity based approach.

2020

pdf bib
TextAttack: A Framework for Adversarial Attacks, Data Augmentation, and Adversarial Training in NLP
John Morris | Eli Lifland | Jin Yong Yoo | Jake Grigsby | Di Jin | Yanjun Qi
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

While there has been substantial research using adversarial attacks to analyze NLP models, each attack is implemented in its own code repository. It remains challenging to develop NLP attacks and utilize them to improve model performance. This paper introduces TextAttack, a Python framework for adversarial attacks, data augmentation, and adversarial training in NLP. TextAttack builds attacks from four components: a goal function, a set of constraints, a transformation, and a search method. TextAttack’s modular design enables researchers to easily construct attacks from combinations of novel and existing components. TextAttack provides implementations of 16 adversarial attacks from the literature and supports a variety of models and datasets, including BERT and other transformers, and all GLUE tasks. TextAttack also includes data augmentation and adversarial training modules for using components of adversarial attacks to improve model accuracy and robustness. TextAttack is democratizing NLP: anyone can try data augmentation and adversarial training on any model or dataset, with just a few lines of code. Code and tutorials are available at https://github.com/QData/TextAttack.

pdf bib
Reevaluating Adversarial Examples in Natural Language
John Morris | Eli Lifland | Jack Lanchantin | Yangfeng Ji | Yanjun Qi
Findings of the Association for Computational Linguistics: EMNLP 2020

State-of-the-art attacks on NLP models lack a shared definition of a what constitutes a successful attack. We distill ideas from past work into a unified framework: a successful natural language adversarial example is a perturbation that fools the model and follows some linguistic constraints. We then analyze the outputs of two state-of-the-art synonym substitution attacks. We find that their perturbations often do not preserve semantics, and 38% introduce grammatical errors. Human surveys reveal that to successfully preserve semantics, we need to significantly increase the minimum cosine similarities between the embeddings of swapped words and between the sentence encodings of original and perturbed sentences. With constraints adjusted to better preserve semantics and grammaticality, the attack success rate drops by over 70 percentage points.

pdf bib
Second-Order NLP Adversarial Examples
John Morris
Proceedings of the Third BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP

Adversarial example generation methods in NLP rely on models like language models or sentence encoders to determine if potential adversarial examples are valid. In these methods, a valid adversarial example fools the model being attacked, and is determined to be semantically or syntactically valid by a second model. Research to date has counted all such examples as errors by the attacked model. We contend that these adversarial examples may not be flaws in the attacked model, but flaws in the model that determines validity. We term such invalid inputs second-order adversarial examples. We propose the constraint robustness curve, and associated metric ACCS, as tools for evaluating the robustness of a constraint to second-order adversarial examples. To generate this curve, we design an adversarial attack to run directly on the semantic similarity models. We test on two constraints, the Universal Sentence Encoder (USE) and BERTScore. Our findings indicate that such second-order examples exist, but are typically less common than first-order adversarial examples in state-of-the-art models. They also indicate that USE is effective as constraint on NLP adversarial examples, while BERTScore is nearly ineffectual. Code for running the experiments in this paper is available here.

pdf bib
Searching for a Search Method: Benchmarking Search Algorithms for Generating NLP Adversarial Examples
Jin Yong Yoo | John Morris | Eli Lifland | Yanjun Qi
Proceedings of the Third BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP

We study the behavior of several black-box search algorithms used for generating adversarial examples for natural language processing (NLP) tasks. We perform a fine-grained analysis of three elements relevant to search: search algorithm, search space, and search budget. When new search algorithms are proposed in past work, the attack search space is often modified alongside the search algorithm. Without ablation studies benchmarking the search algorithm change with the search space held constant, one cannot tell if an increase in attack success rate is a result of an improved search algorithm or a less restrictive search space. Additionally, many previous studies fail to properly consider the search algorithms’ run-time cost, which is essential for downstream tasks like adversarial training. Our experiments provide a reproducible benchmark of search algorithms across a variety of search spaces and query budgets to guide future research in adversarial NLP. Based on our experiments, we recommend greedy attacks with word importance ranking when under a time constraint or attacking long inputs, and either beam search or particle swarm optimization otherwise.

pdf bib
TextAttack: Lessons learned in designing Python frameworks for NLP
John Morris | Jin Yong Yoo | Yanjun Qi
Proceedings of Second Workshop for NLP Open Source Software (NLP-OSS)

TextAttack is an open-source Python toolkit for adversarial attacks, adversarial training, and data augmentation in NLP. TextAttack unites 15+ papers from the NLP adversarial attack literature into a single framework, with many components reused across attacks. This framework allows both researchers and developers to test and study the weaknesses of their NLP models. To build such an open-source NLP toolkit requires solving some common problems: How do we enable users to supply models from different deep learning frameworks? How can we build tools to support as many different datasets as possible? We share our insights into developing a well-written, well-documented NLP Python framework in hope that they can aid future development of similar packages.