John Palowitch


2024

pdf bib
Into the Unknown: Generating Geospatial Descriptions for New Environments
Tzuf Paz-Argaman | John Palowitch | Sayali Kulkarni | Reut Tsarfaty | Jason Baldridge
Findings of the Association for Computational Linguistics: ACL 2024

Similar to vision-and-language navigation (VLN) tasks that focus on bridging the gap between vision and language for embodied navigation, the new Rendezvous (RVS) task requires reasoning over allocentric spatial relationships using non-sequential navigation instructions and maps. However, performance substantially drops in new environments with no training data.Using opensource descriptions paired with coordinates (e.g., Wikipedia) provides training data but suffers from limited spatially-oriented text resulting in low geolocation resolution. We propose a large-scale augmentation method for generating high-quality synthetic data for new environments using readily available geospatial data. Our method constructs a grounded knowledge-graph, capturing entity relationships. Sampled entities and relations (“shop north of school”) generate navigation instructions via (i) generating numerous templates using context-free grammar (CFG) to embed specific entities and relations; (ii) feeding the entities and relation into a large language model (LLM) for instruction generation. A comprehensive evaluation on RVS, showed that our approach improves the 100-meter accuracy by 45.83% on unseen environments. Furthermore, we demonstrate that models trained with CFG-based augmentation achieve superior performance compared with those trained with LLM-based augmentation, both in unseen and seen environments. These findings suggest that the potential advantages of explicitly structuring spatial information for text-based geospatial reasoning in previously unknown, can unlock data-scarce scenarios.

pdf bib
Where Do We Go From Here? Multi-scale Allocentric Relational Inferencefrom Natural Spatial Descriptions
Tzuf Paz-Argaman | John Palowitch | Sayali Kulkarni | Jason Baldridge | Reut Tsarfaty
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)

The concept of acquired spatial knowledge is crucial in spatial cognitive research, particularly when it comes to communicating routes. However, NLP navigation studies often overlook the impact of acquired knowledge on textual descriptions. Current navigation studies concentrate on egocentric local descriptions (e.g., ‘it will be on your right’) that require reasoning over the agent’s local perception. These instructions are typically given in a sequence of steps, with each action-step explicitly mentioned and followed by a landmark that the agent can use to verify that they are on the correct path (e.g., ‘turn right and then you will see...’). In contrast, descriptions based on knowledge acquired through a map provide a complete view of the environment and capture its compositionality. These instructions typically contain allocentric relations, are non-sequential, with implicit actions and multiple spatial relations without any verification (e.g., ‘south of Central Park and a block north of a police station’). This paper introduces the Rendezvous (RVS) task and dataset, which includes 10,404 examples of English geospatial instructions for reaching a target location using map-knowledge. Our analysis reveals that RVS exhibits a richer use of spatial allocentric relations, and requires resolving more spatial relations simultaneously compared to previous text-based navigation benchmarks.