Jon Gauthier


2023

pdf bib
Language model acceptability judgements are not always robust to context
Koustuv Sinha | Jon Gauthier | Aaron Mueller | Kanishka Misra | Keren Fuentes | Roger Levy | Adina Williams
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Targeted syntactic evaluations of language models ask whether models show stable preferences for syntactically acceptable content over minimal-pair unacceptable inputs. Our best syntactic evaluation datasets, however, provide substantially less linguistic context than models receive during pretraining. This mismatch raises an important question: how robust are models’ syntactic judgements across different contexts? In this paper, we vary the input contexts based on: length, the types of syntactic phenomena it contains, and whether or not there are grammatical violations. We find that model judgements are generally robust when placed in randomly sampled linguistic contexts, but are unstable when contexts match the test stimuli in syntactic structure. Among all tested models (GPT-2 and five variants of OPT), we find that model performance is affected when we provided contexts with matching syntactic structure: performance significantly improves when contexts are acceptable, and it significantly declines when they are unacceptable. This effect is amplified by the length of the context, except for unrelated inputs. We show that these changes in model performance are not explainable by acceptability-preserving syntactic perturbations. This sensitivity to highly specific syntactic features of the context can only be explained by the models’ implicit in-context learning abilities.

pdf bib
The neural dynamics of word recognition and integration
Jon Gauthier | Roger Levy
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Listeners recognize and integrate words in rapid and noisy everyday speech by combining expectations about upcoming content with incremental sensory evidence. We present a computational model of word recognition which formalizes this perceptual process in Bayesian decision theory. We fit this model to explain scalp EEG signals recorded as subjects passively listened to a fictional story, revealing both the dynamics of the online auditory word recognition process and the neural correlates of the recognition and integration of words. The model reveals distinct neural processing of words depending on whether or not they can be quickly recognized. While all words trigger a neural response characteristic of probabilistic integration — voltage modulations predicted by a word’s surprisal in context — these modulations are amplified for words which require more than roughly 150 ms of input to be recognized. We observe no difference in the latency of these neural responses according to words’ recognition times. Our results support a two-part model of speech comprehension, combining an eager and rapid process of word recognition with a temporally independent process of word integration. However, we also developed alternative models of the scalp EEG signal not incorporating word recognition dynamics which showed similar performance improvements. We discuss potential future modeling steps which may help to separate these hypotheses.

2020

pdf bib
A Systematic Assessment of Syntactic Generalization in Neural Language Models
Jennifer Hu | Jon Gauthier | Peng Qian | Ethan Wilcox | Roger Levy
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

While state-of-the-art neural network models continue to achieve lower perplexity scores on language modeling benchmarks, it remains unknown whether optimizing for broad-coverage predictive performance leads to human-like syntactic knowledge. Furthermore, existing work has not provided a clear picture about the model properties required to produce proper syntactic generalizations. We present a systematic evaluation of the syntactic knowledge of neural language models, testing 20 combinations of model types and data sizes on a set of 34 English-language syntactic test suites. We find substantial differences in syntactic generalization performance by model architecture, with sequential models underperforming other architectures. Factorially manipulating model architecture and training dataset size (1M-40M words), we find that variability in syntactic generalization performance is substantially greater by architecture than by dataset size for the corpora tested in our experiments. Our results also reveal a dissociation between perplexity and syntactic generalization performance.

pdf bib
SyntaxGym: An Online Platform for Targeted Evaluation of Language Models
Jon Gauthier | Jennifer Hu | Ethan Wilcox | Peng Qian | Roger Levy
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations

Targeted syntactic evaluations have yielded insights into the generalizations learned by neural network language models. However, this line of research requires an uncommon confluence of skills: both the theoretical knowledge needed to design controlled psycholinguistic experiments, and the technical proficiency needed to train and deploy large-scale language models. We present SyntaxGym, an online platform designed to make targeted evaluations accessible to both experts in NLP and linguistics, reproducible across computing environments, and standardized following the norms of psycholinguistic experimental design. This paper releases two tools of independent value for the computational linguistics community: 1. A website, syntaxgym.org, which centralizes the process of targeted syntactic evaluation and provides easy tools for analysis and visualization; 2. Two command-line tools, ‘syntaxgym‘ and ‘lm-zoo‘, which allow any user to reproduce targeted syntactic evaluations and general language model inference on their own machine.

2019

pdf bib
Linking artificial and human neural representations of language
Jon Gauthier | Roger Levy
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

What information from an act of sentence understanding is robustly represented in the human brain? We investigate this question by comparing sentence encoding models on a brain decoding task, where the sentence that an experimental participant has seen must be predicted from the fMRI signal evoked by the sentence. We take a pre-trained BERT architecture as a baseline sentence encoding model and fine-tune it on a variety of natural language understanding (NLU) tasks, asking which lead to improvements in brain-decoding performance. We find that none of the sentence encoding tasks tested yield significant increases in brain decoding performance. Through further task ablations and representational analyses, we find that tasks which produce syntax-light representations yield significant improvements in brain decoding performance. Our results constrain the space of NLU models that could best account for human neural representations of language, but also suggest limits on the possibility of decoding fine-grained syntactic information from fMRI human neuroimaging.

2017

pdf bib
Are Distributional Representations Ready for the Real World? Evaluating Word Vectors for Grounded Perceptual Meaning
Li Lucy | Jon Gauthier
Proceedings of the First Workshop on Language Grounding for Robotics

Distributional word representation methods exploit word co-occurrences to build compact vector encodings of words. While these representations enjoy widespread use in modern natural language processing, it is unclear whether they accurately encode all necessary facets of conceptual meaning. In this paper, we evaluate how well these representations can predict perceptual and conceptual features of concrete concepts, drawing on two semantic norm datasets sourced from human participants. We find that several standard word representations fail to encode many salient perceptual features of concepts, and show that these deficits correlate with word-word similarity prediction errors. Our analyses provide motivation for grounded and embodied language learning approaches, which may help to remedy these deficits.

2016

pdf bib
A Fast Unified Model for Parsing and Sentence Understanding
Samuel R. Bowman | Jon Gauthier | Abhinav Rastogi | Raghav Gupta | Christopher D. Manning | Christopher Potts
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)