Jonathan Kamp
2024
The Role of Syntactic Span Preferences in Post-Hoc Explanation Disagreement
Jonathan Kamp
|
Lisa Beinborn
|
Antske Fokkens
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
Post-hoc explanation methods are an important tool for increasing model transparency for users. Unfortunately, the currently used methods for attributing token importance often yield diverging patterns. In this work, we study potential sources of disagreement across methods from a linguistic perspective. We find that different methods systematically select different classes of words and that methods that agree most with other methods and with humans display similar linguistic preferences. Token-level differences between methods are smoothed out if we compare them on the syntactic span level. We also find higher agreement across methods by estimating the most important spans dynamically instead of relying on a fixed subset of size k. We systematically investigate the interaction between k and spans and propose an improved configuration for selecting important tokens.
2023
Dynamic Top-k Estimation Consolidates Disagreement between Feature Attribution Methods
Jonathan Kamp
|
Lisa Beinborn
|
Antske Fokkens
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Feature attribution scores are used for explaining the prediction of a text classifier to users by highlighting a k number of tokens. In this work, we propose a way to determine the number of optimal k tokens that should be displayed from sequential properties of the attribution scores. Our approach is dynamic across sentences, method-agnostic, and deals with sentence length bias. We compare agreement between multiple methods and humans on an NLI task, using fixed k and dynamic k. We find that perturbation-based methods and Vanilla Gradient exhibit highest agreement on most method–method and method–human agreement metrics with a static k. Their advantage over other methods disappears with dynamic ks which mainly improve Integrated Gradient and GradientXInput. To our knowledge, this is the first evidence that sequential properties of attribution scores are informative for consolidating attribution signals for human interpretation.
2022
Perturbations and Subpopulations for Testing Robustness in Token-Based Argument Unit Recognition
Jonathan Kamp
|
Lisa Beinborn
|
Antske Fokkens
Proceedings of the 9th Workshop on Argument Mining
Argument Unit Recognition and Classification aims at identifying argument units from text and classifying them as pro or against. One of the design choices that need to be made when developing systems for this task is what the unit of classification should be: segments of tokens or full sentences. Previous research suggests that fine-tuning language models on the token-level yields more robust results for classifying sentences compared to training on sentences directly. We reproduce the study that originally made this claim and further investigate what exactly token-based systems learned better compared to sentence-based ones. We develop systematic tests for analysing the behavioural differences between the token-based and the sentence-based system. Our results show that token-based models are generally more robust than sentence-based models both on manually perturbed examples and on specific subpopulations of the data.