Jonathan Poinhos


pdf bib
Automatic Normalisation of Early Modern French
Rachel Bawden | Jonathan Poinhos | Eleni Kogkitsidou | Philippe Gambette | Benoît Sagot | Simon Gabay
Proceedings of the Thirteenth Language Resources and Evaluation Conference

Spelling normalisation is a useful step in the study and analysis of historical language texts, whether it is manual analysis by experts or automatic analysis using downstream natural language processing (NLP) tools. Not only does it help to homogenise the variable spelling that often exists in historical texts, but it also facilitates the use of off-the-shelf contemporary NLP tools, if contemporary spelling conventions are used for normalisation. We present FREEMnorm, a new benchmark for the normalisation of Early Modern French (from the 17th century) into contemporary French and provide a thorough comparison of three different normalisation methods: ABA, an alignment-based approach and MT-approaches, (both statistical and neural), including extensive parameter searching, which is often missing in the normalisation literature.