Jongwon Lee


2022

pdf bib
You Only Need One Model for Open-domain Question Answering
Haejun Lee | Akhil Kedia | Jongwon Lee | Ashwin Paranjape | Christopher Manning | Kyoung-Gu Woo
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Recent approaches to Open-domain Question Answering refer to an external knowledge base using a retriever model, optionally rerank passages with a separate reranker model and generate an answer using another reader model. Despite performing related tasks, the models have separate parameters and are weakly-coupled during training. We propose casting the retriever and the reranker as internal passage-wise attention mechanisms applied sequentially within the transformer architecture and feeding computed representations to the reader, with the hidden representations progressively refined at each stage. This allows us to use a single question answering model trained end-to-end, which is a more efficient use of model capacity and also leads to better gradient flow. We present a pre-training method to effectively train this architecture and evaluate our model on the Natural Questions and TriviaQA open datasets. For a fixed parameter budget, our model outperforms the previous state-of-the-art model by 1.0 and 0.7 exact match scores.

pdf bib
KOLD: Korean Offensive Language Dataset
Younghoon Jeong | Juhyun Oh | Jongwon Lee | Jaimeen Ahn | Jihyung Moon | Sungjoon Park | Alice Oh
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Recent directions for offensive language detection are hierarchical modeling, identifying the type and the target of offensive language, and interpretability with offensive span annotation and prediction. These improvements are focused on English and do not transfer well to other languages because of cultural and linguistic differences. In this paper, we present the Korean Offensive Language Dataset (KOLD) comprising 40,429 comments, which are annotated hierarchically with the type and the target of offensive language, accompanied by annotations of the corresponding text spans. We collect the comments from NAVER news and YouTube platform and provide the titles of the articles and videos as the context information for the annotation process. We use these annotated comments as training data for Korean BERT and RoBERTa models and find that they are effective at offensiveness detection, target classification, and target span detection while having room for improvement for target group classification and offensive span detection. We discover that the target group distribution differs drastically from the existing English datasets, and observe that providing the context information improves the model performance in offensiveness detection (+0.3), target classification (+1.5), and target group classification (+13.1). We publicly release the dataset and baseline models.