In Open-domain Question Answering (ODQA), it is essential to discern relevant contexts as evidence and avoid spurious ones among retrieved results. The model architecture that uses concatenated multiple contexts in the decoding phase, *i.e.*, Fusion-in-Decoder, demonstrates promising performance but generates incorrect outputs from seemingly plausible contexts. To address this problem, we propose the ***M**ulti-**G**ranularity guided **F**usion-**i**n-**D**ecoder (**MGFiD**)*, discerning evidence across multiple levels of granularity. Based on multi-task learning, MGFiD harmonizes passage re-ranking with sentence classification. It aggregates evident sentences into an *anchor vector* that instructs the decoder. Additionally, it improves decoding efficiency by reusing the results of passage re-ranking for *passage pruning*. Through our experiments, MGFiD outperforms existing models on the Natural Questions (NQ) and TriviaQA (TQA) datasets, highlighting the benefits of its multi-granularity solution.
Large language models (LLMs) have achieved significant performance gains using advanced prompting techniques over various tasks. However, the increasing length of prompts leads to high computational costs and often obscures crucial information. Prompt compression has been proposed to alleviate these issues, but it faces challenges in (i) capturing the global context and (ii) training the compressor effectively. To tackle these challenges, we introduce a novel prompt compression method, namely Reading To Compressing (R2C), utilizing the Fusion-in-Decoder (FiD) architecture to identify the important information in the prompt. Specifically, the cross-attention scores of the FiD are used to discern essential chunks and sentences from the prompt. R2C effectively captures the global context without compromising semantic consistency while detouring the necessity of pseudo-labels for training the compressor. Empirical results show that R2C retains key contexts, enhancing the LLM performance by 6% in out-of-domain evaluations while reducing the prompt length by 80%.
Generative retrieval shed light on a new paradigm of document retrieval, aiming to directly generate the identifier of a relevant document for a query. While it takes advantage of bypassing the construction of auxiliary index structures, existing studies face two significant challenges: (i) the discrepancy between the knowledge of pre-trained language models and identifiers and (ii) the gap between training and inference that poses difficulty in learning to rank. To overcome these challenges, we propose a novel generative retrieval method, namely Generative retrieval via LExical iNdex learning (GLEN). For training, GLEN effectively exploits a dynamic lexical identifier using a two-phase index learning strategy, enabling it to learn meaningful lexical identifiers and relevance signals between queries and documents. For inference, GLEN utilizes collision-free inference, using identifier weights to rank documents without additional overhead. Experimental results prove that GLEN achieves state-of-the-art or competitive performance against existing generative retrieval methods on various benchmark datasets, e.g., NQ320k, MS MARCO, and BEIR. The code is available at https://github.com/skleee/GLEN.
The math word problem (MWP) is a complex task that requires natural language understanding and logical reasoning to extract key knowledge from natural language narratives. Previous studies have provided various MWP datasets but lack diversity in problem types, lexical usage patterns, languages, and annotations for intermediate solutions. To address these limitations, we introduce a new MWP dataset, named DMath (Diverse Math Word Problems), offering a wide range of diversity in problem types, lexical usage patterns, languages, and intermediate solutions. The problems are available in English and Korean and include an expression tree and Python code as intermediate solutions. Through extensive experiments, we demonstrate that the DMath dataset provides a new opportunity to evaluate the capability of large language models, i.e., GPT-4 only achieves about 75% accuracy on the DMath dataset.
Automated metaphor detection is a challenging task to identify the metaphorical expression of words in a sentence. To tackle this problem, we adopt pre-trained contextualized models, e.g., BERT and RoBERTa. To this end, we propose a novel metaphor detection model, namely metaphor-aware late interaction over BERT (MelBERT). Our model not only leverages contextualized word representation but also benefits from linguistic metaphor identification theories to detect whether the target word is metaphorical. Our empirical results demonstrate that MelBERT outperforms several strong baselines on four benchmark datasets, i.e., VUA-18, VUA-20, MOH-X, and TroFi.