Jordan W. Suchow


2025

pdf bib
FinNLP-FNP-LLMFinLegal @ COLING 2025 Shared Task: Agent-Based Single Cryptocurrency Trading Challenge
Yangyang Yu | Haohang Li | Yupeng Cao | Keyi Wang | Zhiyang Deng | Zhiyuan Yao | Yuechen Jiang | Dong Li | Ruey-Ling Weng | Jordan W. Suchow
Proceedings of the Joint Workshop of the 9th Financial Technology and Natural Language Processing (FinNLP), the 6th Financial Narrative Processing (FNP), and the 1st Workshop on Large Language Models for Finance and Legal (LLMFinLegal)

Despite the promise of large language models based agent framework in stock trading task, their capabilities for comprehensive analysis and multiple different financial assets remain largely unexplored, such as cryptocurrency trading. To evaluate the capabilities of LLM-based agent framework in cryptocurrency trading, we introduce an LLMs-based financial shared task featured at COLING 2025 FinNLP-FNP-LLMFinLegal workshop, named Agent-based Single Cryptocurrency Trading Challenge. This challenge includes two cryptocurrencies: BitCoin and Ethereum. In this paper, we provide an overview of these tasks and datasets, summarize participants’ methods, and present their experimental evaluations, highlighting the effectiveness of LLMs in addressing cryptocurrency trading challenges. To the best of our knowledge, the Agent-based Single Cryptocurrency Trading Challenge is one of the first challenges for assessing LLMs in the financial area. In consequence, we provide detailed observations and take away conclusions for future development in this area.