Pretrained language models (PLMs) display impressive performances and have captured the attention of the NLP community.Establishing best practices in pretraining has, therefore, become a major focus of NLP research, especially since insights gained from monolingual English models may not necessarily apply to more complex multilingual models.One significant caveat of the current state of the art is that different works are rarely comparable: they often discuss different parameter counts, training data, and evaluation methodology.This paper proposes a comparison of multilingual pretraining objectives in a controlled methodological environment. We ensure that training data and model architectures are comparable, and discuss the downstream performances across 6 languages that we observe in probing and fine-tuning scenarios.We make two key observations: (1) the architecture dictates which pretraining objective is optimal; (2) multilingual translation is a very effective pretraining objective under the right conditions.We make our code, data, and model weights available at https://github.com/Helsinki-NLP/lm-vs-mt.
Automatic text simplification (ATS/TS) models typically require substantial parallel training data. This paper describes our work on expanding the Finnish-Easy Finnish parallel corpus and making baseline simplification models. We discuss different approaches to document and sentence alignment. After finding the optimal alignment methodologies, we increase the amount of document-aligned data 6.5 times and add a sentence-aligned version of the dataset consisting of more than twelve thousand sentence pairs. Using sentence-aligned data, we fine-tune two models for text simplification. The first is mBART, a sequence-to-sequence translation architecture proven to show good results for monolingual translation tasks. The second is the Finnish GPT model, for which we utilize instruction fine-tuning. This work is the first attempt to create simplification models for Finnish using monolingual parallel data in this language. The data has been deposited in the Finnish Language Bank (Kielipankki) and is available for non-commercial use, and the models will be made accessible through either Kielipankki or public repositories such as Huggingface or GitHub.
The High Performance Language Technologies (HPLT) project is a 3-year EU-funded project that started in September 2022. It aims to deliver free, sustainable, and reusable datasets, models, and workflows at scale using high-performance computing. We describe the first results of the project. The data release includes monolingual data in 75 languages at 5.6T tokens and parallel data in 18 language pairs at 96M pairs, derived from 1.8 petabytes of web crawls. Building upon automated and transparent pipelines, the first machine translation (MT) models as well as large language models (LLMs) have been trained and released. Multiple data processing tools and pipelines have also been made public.
NLP in the age of monolithic large language models is approaching its limits in terms of size and information that can be handled. The trend goes to modularization, a necessary step into the direction of designing smaller sub-networks and components with specialized functionality. In this paper, we present the MAMMOTH toolkit: a framework designed for training massively multilingual modular machine translation systems at scale, initially derived from OpenNMT-py and then adapted to ensure efficient training across computation clusters.We showcase its efficiency across clusters of A100 and V100 NVIDIA GPUs, and discuss our design philosophy and plans for future information.The toolkit is publicly available online at https://github.com/Helsinki-NLP/mammoth.
The Helsinki-NLP team participated in the 2024 Shared Task on Translation into Low-Resource languages of Spain with four multilingual systems covering all language pairs. The task consists in developing Machine Translation (MT) models to translate from Spanish into Aragonese, Aranese and Asturian. Our models leverage known approaches for multilingual MT, namely, data filtering, fine-tuning, data tagging, and distillation. We use distillation to merge the knowledge from neural and rule-based systems and explore the trade-offs between translation quality and computational efficiency. We demonstrate that our distilled models can achieve competitive results while significantly reducing computational costs. Our best models ranked 4th, 5th, and 2nd in the open submission track for Spanish–Aragonese, Spanish–Aranese, and Spanish–Asturian, respectively. We release our code and data publicly at https://github.com/Helsinki-NLP/lowres-spain-st.
We present the HPLT (High Performance Language Technologies) language resources, a new massive multilingual dataset including both monolingual and bilingual corpora extracted from CommonCrawl and previously unused web crawls from the Internet Archive. We describe our methods for data acquisition, management and processing of large corpora, which rely on open-source software tools and high-performance computing. Our monolingual collection focuses on low- to medium-resourced languages and covers 75 languages and a total of ≈ 5.6 trillion word tokens de-duplicated on the document level. Our English-centric parallel corpus is derived from its monolingual counterpart and covers 18 language pairs and more than 96 million aligned sentence pairs with roughly 1.4 billion English tokens. The HPLT language resources are one of the largest open text corpora ever released, providing a great resource for language modeling and machine translation training. We publicly release the corpora, the software, and the tools used in this work.
Multilingual pretraining and fine-tuning have remarkably succeeded in various natural language processing tasks. Transferring representations from one language to another is especially crucial for cross-lingual learning. One can expect machine translation objectives to be well suited to fostering such capabilities, as they involve the explicit alignment of semantically equivalent sentences from different languages. This paper investigates the potential benefits of employing machine translation as a continued training objective to enhance language representation learning, bridging multilingual pretraining and cross-lingual applications. We study this question through two lenses: a quantitative evaluation of the performance of existing models and an analysis of their latent representations. Our results show that, contrary to expectations, machine translation as the continued training fails to enhance cross-lingual representation learning in multiple cross-lingual natural language understanding tasks. We conclude that explicit sentence-level alignment in the cross-lingual scenario is detrimental to cross-lingual transfer pretraining, which has important implications for future cross-lingual transfer studies. We furthermore provide evidence through similarity measures and investigation of parameters that this lack of positive influence is due to output separability—which we argue is of use for machine translation but detrimental elsewhere.
This paper presents the results of the SHROOM, a shared task focused on detecting hallucinations: outputs from natural language generation (NLG) systems that are fluent, yet inaccurate. Such cases of overgeneration put in jeopardy many NLG applications, where correctness is often mission-critical. The shared task was conducted with a newly constructed dataset of 4000 model outputs labeled by 5 annotators each, spanning 3 NLP tasks: machine translation, paraphrase generation and definition modeling.The shared task was tackled by a total of 58 different users grouped in 42 teams, out of which 26 elected to write a system description paper; collectively, they submitted over 300 prediction sets on both tracks of the shared task. We observe a number of key trends in how this approach was tackled—many participants rely on a handful of model, and often rely either on synthetic data for fine-tuning or zero-shot prompting strategies. While a majority of the teams did outperform our proposed baseline system, the performances of top-scoring systems are still consistent with a random handling of the more challenging items.
The OPUS-MT dashboard is a web-based platform that provides a comprehensive overview of open translation models. We focus on a systematic collection of benchmark results with verifiable translation performance and large coverage in terms of languages and domains. We provide results for in-house OPUS-MT and Tatoeba models as well as external models from the Huggingface repository and user-contributed translations. The functionalities of the evaluation tool include summaries of benchmarks for over 2,300 models covering 4,560 language directions and 294 languages, as well as the inspection of predicted translations against their human reference. We focus on centralization, reproducibility and coverage of MT evaluation combined with scalability. The dashboard can be accessed live at https://opus.nlpl.eu/dashboard/.
This work presents an unsupervised method of selecting filters and threshold values for the OpusFilter parallel corpus cleaning toolbox. The method clusters sentence pairs into noisy and clean categories and uses the features of the noisy cluster center as filtering parameters. Our approach utilizes feature importance analysis to disregard filters that do not differentiate between clean and noisy data. A randomly sampled subset of a given corpus is used for filter selection and ineffective filters are not run for the full corpus. We use a set of automatic evaluation metrics to assess the quality of translation models trained with data filtered by our method and data filtered with OpusFilter’s default parameters. The trained models cover English-German and English-Ukrainian in both directions. The proposed method outperforms the default parameters in all translation directions for almost all evaluation metrics.
We describe the High Performance Language Technologies project (HPLT), a 3-year EU-funded project started in September 2022. HPLT will build a space combining petabytes of natural language data with large-scale model training. It will derive monolingual and bilingual datasets from the Internet Archive and CommonCrawl and build efficient and solid machine translation (MT) as well as large language models (LLMs). HPLT aims at providing free, sustainable and reusable datasets, models and workflows at scale using high-performance computing (HPC).
There are several ways of implementing multilingual NLP systems but little consensus as to whether different approaches exhibit similar effects. Are the trends that we observe when adding more languages the same as those we observe when sharing more parameters? We focus on encoder representations drawn from modular multilingual machine translation systems in an English-centric scenario, and study their quality from multiple aspects: how adequate they are for machine translation, how independent of the source language they are, and what semantic information they convey. Adding translation directions in English-centric scenarios does not conclusively lead to an increase in translation quality. Shared layers increase performance on zero-shot translation pairs and lead to more language-independent representations, but these improvements do not systematically align with more semantically accurate representations, from a monolingual standpoint.
This paper introduces Bayesian uncertainty modeling using Stochastic Weight Averaging-Gaussian (SWAG) in Natural Language Understanding (NLU) tasks. We apply the approach to standard tasks in natural language inference (NLI) and demonstrate the effectiveness of the method in terms of prediction accuracy and correlation with human annotation disagreements. We argue that the uncertainty representations in SWAG better reflect subjective interpretation and the natural variation that is also present in human language understanding. The results reveal the importance of uncertainty modeling, an often neglected aspect of neural language modeling, in NLU tasks.
The Helsinki-NLP team participated in the AmericasNLP 2023 Shared Task with 6 submissions for all 11 language pairs arising from 4 different multilingual systems. We provide a detailed look at the work that went into collecting and preprocessing the data that led to our submissions. We explore various setups for multilingual Neural Machine Translation (NMT), namely knowledge distillation and transfer learning, multilingual NMT including a high-resource language (English), language-specific fine-tuning, and multilingual NMT exclusively using low-resource data. Our multilingual Model B ranks first in 4 out of the 11 language pairs.
We investigate to what extent a hundred publicly available, popular neural language models capture meaning systematically. Sentence embeddings obtained from pretrained or fine-tuned language models can be used to perform particular tasks, such as paraphrase detection, semantic textual similarity assessment or natural language inference. Common to all of these tasks is that paraphrastic sentences, that is, sentences that carry (nearly) the same meaning, should have (nearly) the same embeddings regardless of surface form. We demonstrate that performance varies greatly across different language models when a specific type of meaning-preserving transformation is applied: two sentences should be identified as paraphrastic if one of them contains a negated antonym in relation to the other one, such as “I am not guilty” versus “I am innocent”.We introduce and release SemAntoNeg, a new test suite containing 3152 entries for probing paraphrasticity in sentences incorporating negation and antonyms. Among other things, we show that language models fine-tuned for natural language inference outperform other types of models, especially the ones fine-tuned to produce general-purpose sentence embeddings, on the test suite. Furthermore, we show that most models designed explicitly for paraphrasing are rather mediocre in our task.
A central question in natural language understanding (NLU) research is whether high performance demonstrates the models’ strong reasoning capabilities. We present an extensive series of controlled experiments where pre-trained language models are exposed to data that have undergone specific corruption transformations. These involve removing instances of specific word classes and often lead to non-sensical sentences. Our results show that performance remains high on most GLUE tasks when the models are fine-tuned or tested on corrupted data, suggesting that they leverage other cues for prediction even in non-sensical contexts. Our proposed data transformations can be used to assess the extent to which a specific dataset constitutes a proper testbed for evaluating models’ language understanding capabilities.
Noisy labels in training data present a challenging issue in classification tasks, misleading a model towards incorrect decisions during training. In this paper, we propose the use of a linear noise model to augment pre-trained language models to account for label noise in fine-tuning. We test our approach in a paraphrase detection task with various levels of noise and five different languages. Our experiments demonstrate the effectiveness of the additional noise model in making the training procedures more robust and stable. Furthermore, we show that this model can be applied without further knowledge about annotation confidence and reliability of individual training examples and we analyse our results in light of data selection and sampling strategies.
We describe the enhancement of a multilingual NMT toolkit developed as part of the FoTran project. We devise our modular attention-bridge model, which connects language-specific components through a shared network layer. The system now supports distributed training over many nodes and GPUs in order to substantially scale up the number of languages that can be included in a modern neural translation architecture. The model enables the study of emerging language-agnostic representations and also provides a modular toolkit for efficient machine translation.
This paper describes the University of Helsinki submission to the SemEval 2022 task on multilingual idiomaticity detection. Our system utilizes several models made available by HuggingFace, along with the baseline BERT model for the task. We focus on feature engineering based on properties that typically characterize idiomatic expressions. The additional features lead to improvements over the baseline and the final submission achieves 15th place out of 20 submissions. The paper provides error analysis of our model including visualisations of the contributions of individual features.
We analyze the learning dynamics of neural language and translation models using Loss Change Allocation (LCA), an indicator that enables a fine-grained analysis of parameter updates when optimizing for the loss function. In other words, we can observe the contributions of different network components at training time. In this article, we systematically study masked language modeling, causal language modeling, and machine translation. We show that the choice of training objective leads to distinctive optimization procedures, even when performed on comparable Transformer architectures. We demonstrate how the various Transformer parameters are used during training, supporting that the feed-forward components of each layer are the main contributors to the optimization procedure. Finally, we find that the learning dynamics are not affected by data size and distribution but rather determined by the learning objective.
Prerecorded laughter accompanying dialog in comedy TV shows encourages the audience to laugh by clearly marking humorous moments in the show. We present an approach for automatically detecting humor in the Friends TV show using multimodal data. Our model is capable of recognizing whether an utterance is humorous or not and assess the intensity of it. We use the prerecorded laughter in the show as annotation as it marks humor and the length of the audience’s laughter tells us how funny a given joke is. We evaluate the model on episodes the model has not been exposed to during the training phase. Our results show that the model is capable of correctly detecting whether an utterance is humorous 78% of the time and how long the audience’s laughter reaction should last with a mean absolute error of 600 milliseconds.
Various studies show that pretrained language models such as BERT cannot straightforwardly replace encoders in neural machine translation despite their enormous success in other tasks. This is even more astonishing considering the similarities between the architectures. This paper sheds some light on the embedding spaces they create, using average cosine similarity, contextuality metrics and measures for representational similarity for comparison, revealing that BERT and NMT encoder representations look significantly different from one another. In order to address this issue, we propose a supervised transformation from one into the other using explicit alignment and fine-tuning. Our results demonstrate the need for such a transformation to improve the applicability of BERT in MT.
Pre-trained neural language models give high performance on natural language inference (NLI) tasks. But whether they actually understand the meaning of the processed sequences is still unclear. We propose a new diagnostics test suite which allows to assess whether a dataset constitutes a good testbed for evaluating the models’ meaning understanding capabilities. We specifically apply controlled corruption transformations to widely used benchmarks (MNLI and ANLI), which involve removing entire word classes and often lead to non-sensical sentence pairs. If model accuracy on the corrupted data remains high, then the dataset is likely to contain statistical biases and artefacts that guide prediction. Inversely, a large decrease in model accuracy indicates that the original dataset provides a proper challenge to the models’ reasoning capabilities. Hence, our proposed controls can serve as a crash test for developing high quality data for NLI tasks.
We consider a low-resource translation task from Finnish into Northern Sámi. Collecting all available parallel data between the languages, we obtain around 30,000 sentence pairs. However, there exists a significantly larger monolingual Northern Sámi corpus, as well as a rule-based machine translation (RBMT) system between the languages. To make the best use of the monolingual data in a neural machine translation (NMT) system, we use the backtranslation approach to create synthetic parallel data from it using both NMT and RBMT systems. Evaluating the results on an in-domain test set and a small out-of-domain set, we find that the RBMT backtranslation outperforms NMT backtranslation clearly for the out-of-domain test set, but also slightly for the in-domain data, for which the NMT backtranslation model provided clearly better BLEU scores than the RBMT. In addition, combining both backtranslated data sets improves the RBMT approach only for the in-domain test set. This suggests that the RBMT system provides general-domain knowledge that cannot be found from the relative small parallel training data.
The University of Helsinki participated in the AmericasNLP shared task for all ten language pairs. Our multilingual NMT models reached the first rank on all language pairs in track 1, and first rank on nine out of ten language pairs in track 2. We focused our efforts on three aspects: (1) the collection of additional data from various sources such as Bibles and political constitutions, (2) the cleaning and filtering of training data with the OpusFilter toolkit, and (3) different multilingual training techniques enabled by the latest version of the OpenNMT-py toolkit to make the most efficient use of the scarce data. This paper describes our efforts in detail.
Zero-shot translations is a fascinating feature of Multilingual Neural Machine Translation (MNMT) systems. These MNMT models are usually trained on English-centric data, i.e. English either as the source or target language, and with a language label prepended to the input indicating the target language. However, recent work has highlighted several flaws of these models in zero-shot scenarios where language labels are ignored and the wrong language is generated or different runs show highly unstable results. In this paper, we investigate the benefits of an explicit alignment to language labels in Transformer-based MNMT models in the zero-shot context, by jointly training one cross attention head with word alignment supervision to stress the focus on the target language label. We compare and evaluate several MNMT systems on three multilingual MT benchmarks of different sizes, showing that simply supervising one cross attention head to focus both on word alignments and language labels reduces the bias towards translating into the wrong language, improving the zero-shot performance overall. Moreover, as an additional advantage, we find that our alignment supervision leads to more stable results across different training runs.
Parallel language corpora where regular texts are aligned with their simplified versions can be used in both natural language processing and theoretical linguistic studies. They are essential for the task of automatic text simplification, but can also provide valuable insights into the characteristics that make texts more accessible and reveal strategies that human experts use to simplify texts. Today, there exist a few parallel datasets for English and Simple English, but many other languages lack such data. In this paper we describe our work on creating an aligned Russian-Simple Russian dataset composed of Russian literature texts adapted for learners of Russian as a foreign language. This will be the first parallel dataset in this domain, and one of the first Simple Russian datasets in general.
We present a new comprehensive dataset for the unstandardised West-Germanic language Low Saxon covering the last two centuries, the majority of modern dialects and various genres, which will be made openly available in connection with the final version of this paper. Since so far no such comprehensive dataset of contemporary Low Saxon exists, this provides a great contribution to NLP research on this language. We also test the use of this dataset for dialect classification by training a few baseline models comparing statistical and neural approaches. The performance of these models shows that in spite of an imbalance in the amount of data per dialect, enough features can be learned for a relatively high classification accuracy.
We introduce XED, a multilingual fine-grained emotion dataset. The dataset consists of human-annotated Finnish (25k) and English sentences (30k), as well as projected annotations for 30 additional languages, providing new resources for many low-resource languages. We use Plutchik’s core emotions to annotate the dataset with the addition of neutral to create a multilabel multiclass dataset. The dataset is carefully evaluated using language-specific BERT models and SVMs to show that XED performs on par with other similar datasets and is therefore a useful tool for sentiment analysis and emotion detection.
This paper reports on our participation with the MUCOW test suite at the WMT 2020 news translation task. We introduced MUCOW at WMT 2019 to measure the ability of MT systems to perform word sense disambiguation (WSD), i.e., to translate an ambiguous word with its correct sense. MUCOW is created automatically using existing resources, and the evaluation process is also entirely automated. We evaluate all participating systems of the language pairs English -> Czech, English -> German, and English -> Russian and compare the results with those obtained at WMT 2019. While current NMT systems are fairly good at handling ambiguous source words, we could not identify any substantial progress - at least to the extent that it is measurable by the MUCOW method - in that area over the last year.
This paper describes the development of a new benchmark for machine translation that provides training and test data for thousands of language pairs covering over 500 languages and tools for creating state-of-the-art translation models from that collection. The main goal is to trigger the development of open translation tools and models with a much broader coverage of the World’s languages. Using the package it is possible to work on realistic low-resource scenarios avoiding artificially reduced setups that are common when demonstrating zero-shot or few-shot learning. For the first time, this package provides a comprehensive collection of diverse data sets in hundreds of languages with systematic language and script annotation and data splits to extend the narrow coverage of existing benchmarks. Together with the data release, we also provide a growing number of pre-trained baseline models for individual language pairs and selected language groups.
This paper presents the different models submitted by the LT@Helsinki team for the SemEval 2020 Shared Task 12. Our team participated in sub-tasks A and C; titled offensive language identification and offense target identification, respectively. In both cases we used the so-called Bidirectional Encoder Representation from Transformer (BERT), a model pre-trained by Google and fine-tuned by us on the OLID and SOLID datasets. The results show that offensive tweet classification is one of several language-based tasks where BERT can achieve state-of-the-art results.
Lexical ambiguity is one of the many challenging linguistic phenomena involved in translation, i.e., translating an ambiguous word with its correct sense. In this respect, previous work has shown that the translation quality of neural machine translation systems can be improved by explicitly modeling the senses of ambiguous words. Recently, several evaluation test sets have been proposed to measure the word sense disambiguation (WSD) capability of machine translation systems. However, to date, these evaluation test sets do not include any training data that would provide a fair setup measuring the sense distributions present within the training data itself. In this paper, we present an evaluation benchmark on WSD for machine translation for 10 language pairs, comprising training data with known sense distributions. Our approach for the construction of the benchmark builds upon the wide-coverage multilingual sense inventory of BabelNet, the multilingual neural parsing pipeline TurkuNLP, and the OPUS collection of translated texts from the web. The test suite is available at http://github.com/Helsinki-NLP/MuCoW.
This paper introduces OpusTools, a package for downloading and processing parallel corpora included in the OPUS corpus collection. The package implements tools for accessing compressed data in their archived release format and make it possible to easily convert between common formats. OpusTools also includes tools for language identification and data filtering as well as tools for importing data from various sources into the OPUS format. We show the use of these tools in parallel corpus creation and data diagnostics. The latter is especially useful for the identification of potential problems and errors in the extensive data set. Using these tools, we can now monitor the validity of data sets and improve the overall quality and consitency of the data collection.
This paper presents FISKMÖ, a project that focuses on the development of resources and tools for cross-linguistic research and machine translation between Finnish and Swedish. The goal of the project is the compilation of a massive parallel corpus out of translated material collected from web sources, public and private organisations and language service providers in Finland with its two official languages. The project also aims at the development of open and freely accessible translation services for those two languages for the general purpose and for domain-specific use. We have released new data sets with over 3 million translation units, a benchmark test set for MT development, pre-trained neural MT models with high coverage and competitive performance and a self-contained MT plugin for a popular CAT tool. The latter enables offline translation without dependencies on external services making it possible to work with highly sensitive data without compromising security concerns.
This paper introduces OpusFilter, a flexible and modular toolbox for filtering parallel corpora. It implements a number of components based on heuristic filters, language identification libraries, character-based language models, and word alignment tools, and it can easily be extended with custom filters. Bitext segments can be ranked according to their quality or domain match using single features or a logistic regression model that can be trained without manually labeled training data. We demonstrate the effectiveness of OpusFilter on the example of a Finnish-English news translation task based on noisy web-crawled training data. Applying our tool leads to improved translation quality while significantly reducing the size of the training data, also clearly outperforming an alternative ranking given in the crawled data set. Furthermore, we show the ability of OpusFilter to perform data selection for domain adaptation.
Neural machine translation has considerably improved the quality of automatic translations by learning good representations of input sentences. In this article, we explore a multilingual translation model capable of producing fixed-size sentence representations by incorporating an intermediate crosslingual shared layer, which we refer to as attention bridge. This layer exploits the semantics from each language and develops into a language-agnostic meaning representation that can be efficiently used for transfer learning. We systematically study the impact of the size of the attention bridge and the effect of including additional languages in the model. In contrast to related previous work, we demonstrate that there is no conflict between translation performance and the use of sentence representations in downstream tasks. In particular, we show that larger intermediate layers not only improve translation quality, especially for long sentences, but also push the accuracy of trainable classification tasks. Nevertheless, shorter representations lead to increased compression that is beneficial in non-trainable similarity tasks. Similarly, we show that trainable downstream tasks benefit from multilingual models, whereas additional language signals do not improve performance in non-trainable benchmarks. This is an important insight that helps to properly design models for specific applications. Finally, we also include an in-depth analysis of the proposed attention bridge and its ability to encode linguistic properties. We carefully analyze the information that is captured by individual attention heads and identify interesting patterns that explain the performance of specific settings in linguistic probing tasks.
This paper presents a user evaluation of machine translation and post-editing for TV subtitles. Based on a process study where 12 professional subtitlers translated and post-edited subtitles, we compare effort in terms of task time and number of keystrokes. We also discuss examples of specific subtitling features like condensation, and how these features may have affected the post-editing results. In addition to overall MT quality, segmentation and timing of the subtitles are found to be important issues to be addressed in future work.
This paper presents OPUS-MT a project that focuses on the development of free resources and tools for machine translation. The current status is a repository of over 1,000 pre-trained neural machine translation models that are ready to be launched in on-line translation services. For this we also provide open source implementations of web applications that can run efficiently on average desktop hardware with a straightforward setup and installation.
This paper describes the University of Helsinki Language Technology group’s participation in the IWSLT 2020 offline speech translation task, addressing the translation of English audio into German text. In line with this year’s task objective, we train both cascade and end-to-end systems for spoken language translation. We opt for an end-to-end multitasking architecture with shared internal representations and a cascade approach that follows a standard procedure consisting of ASR, correction, and MT stages. We also describe the experiments that served as a basis for the submitted systems. Our experiments reveal that multitasking training with shared internal representations is not only possible but allows for knowledge-transfer across modalities.
Transformer-based models have brought a radical change to neural machine translation. A key feature of the Transformer architecture is the so-called multi-head attention mechanism, which allows the model to focus simultaneously on different parts of the input. However, recent works have shown that most attention heads learn simple, and often redundant, positional patterns. In this paper, we propose to replace all but one attention head of each encoder layer with simple fixed – non-learnable – attentive patterns that are solely based on position and do not require any external knowledge. Our experiments with different data sizes and multiple language pairs show that fixing the attention heads on the encoder side of the Transformer at training time does not impact the translation quality and even increases BLEU scores by up to 3 points in low-resource scenarios.
Contextualized word representations encode rich information about syntax and semantics, alongside specificities of each context of use. While contextual variation does not always reflect actual meaning shifts, it can still reduce the similarity of embeddings for word instances having the same meaning. We explore the imprint of two specific linguistic alternations, namely passivization and negation, on the representations generated by neural models trained with two different objectives: masked language modeling and translation. Our exploration methodology is inspired by an approach previously proposed for removing societal biases from word vectors. We show that passivization and negation leave their traces on the representations, and that neutralizing this information leads to more similar embeddings for words that should preserve their meaning in the transformation. We also find clear differences in how the respective features generalize across datasets.
In this paper, we investigate how different aspects of discourse context affect the performance of recent neural MT systems. We describe two popular datasets covering news and movie subtitles and we provide a thorough analysis of the distribution of various document-level features in their domains. Furthermore, we train a set of context-aware MT models on both datasets and propose a comparative evaluation scheme that contrasts coherent context with artificially scrambled documents and absent context, arguing that the impact of discourse-aware MT models will become visible in this way. Our results show that the models are indeed affected by the manipulation of the test data, providing a different view on document-level translation quality than absolute sentence-level scores.
A neural language model trained on a text corpus can be used to induce distributed representations of words, such that similar words end up with similar representations. If the corpus is multilingual, the same model can be used to learn distributed representations of languages, such that similar languages end up with similar representations. We show that this holds even when the multilingual corpus has been translated into English, by picking up the faint signal left by the source languages. However, just as it is a thorny problem to separate semantic from syntactic similarity in word representations, it is not obvious what type of similarity is captured by language representations. We investigate correlations and causal relationships between language representations learned from translations on one hand, and genetic, geographical, and several levels of structural similarity between languages on the other. Of these, structural similarity is found to correlate most strongly with language representation similarity, whereas genetic relationships—a convenient benchmark used for evaluation in previous work—appears to be a confounding factor. Apart from implications about translation effects, we see this more generally as a case where NLP and linguistic typology can interact and benefit one another.
In this paper, we investigate whether multilingual neural translation models learn stronger semantic abstractions of sentences than bilingual ones. We test this hypotheses by measuring the perplexity of such models when applied to paraphrases of the source language. The intuition is that an encoder produces better representations if a decoder is capable of recognizing synonymous sentences in the same language even though the model is never trained for that task. In our setup, we add 16 different auxiliary languages to a bidirectional bilingual baseline model (English-French) and test it with in-domain and out-of-domain paraphrases in English. The results show that the perplexity is significantly reduced in each of the cases, indicating that meaning can be grounded in translation. This is further supported by a study on paraphrase generation that we also include at the end of the paper.
This paper studies the use of NMT (neural machine translation) as a normalization method for an early English letter corpus. The corpus has previously been normalized so that only less frequent deviant forms are left out without normalization. This paper discusses different methods for improving the normalization of these deviant forms by using different approaches. Adding features to the training data is found to be unhelpful, but using a lexicographical resource to filter the top candidates produced by the NMT model together with lemmatization improves results.
In this paper, we explore a multilingual translation model with a cross-lingually shared layer that can be used as fixed-size sentence representation in different downstream tasks. We systematically study the impact of the size of the shared layer and the effect of including additional languages in the model. In contrast to related previous work, we demonstrate that the performance in translation does correlate with trainable downstream tasks. In particular, we show that larger intermediate layers not only improve translation quality, especially for long sentences, but also push the accuracy of trainable classification tasks. On the other hand, shorter representations lead to increased compression that is beneficial in non-trainable similarity tasks. We hypothesize that the training procedure on the downstream task enables the model to identify the encoded information that is useful for the specific task whereas non-trainable benchmarks can be confused by other types of information also encoded in the representation of a sentence.
In this paper, we propose an architecture for machine translation (MT) capable of obtaining multilingual sentence representations by incorporating an intermediate attention bridge that is shared across all languages. We train the model with language-specific encoders and decoders that are connected through an inner-attention layer on the encoder side. The attention bridge exploits the semantics from each language for translation and develops into a language-agnostic meaning representation that can efficiently be used for transfer learning. We present a new framework for the efficient development of multilingual neural machine translation (NMT) using this model and scheduled training. We have tested the approach in a systematic way with a multi-parallel data set. The model achieves substantial improvements over strong bilingual models and performs well for zero-shot translation, which demonstrates its ability of abstraction and transfer learning.
In this paper we present the University of Helsinki submissions to the WMT 2019 shared news translation task in three language pairs: English-German, English-Finnish and Finnish-English. This year we focused first on cleaning and filtering the training data using multiple data-filtering approaches, resulting in much smaller and cleaner training sets. For English-German we trained both sentence-level transformer models as well as compared different document-level translation approaches. For Finnish-English and English-Finnish we focused on different segmentation approaches and we also included a rule-based system for English-Finnish.
Supervised Neural Machine Translation (NMT) systems currently achieve impressive translation quality for many language pairs. One of the key features of a correct translation is the ability to perform word sense disambiguation (WSD), i.e., to translate an ambiguous word with its correct sense. Existing evaluation benchmarks on WSD capabilities of translation systems rely heavily on manual work and cover only few language pairs and few word types. We present MuCoW, a multilingual contrastive test suite that covers 16 language pairs with more than 200 thousand contrastive sentence pairs, automatically built from word-aligned parallel corpora and the wide-coverage multilingual sense inventory of BabelNet. We evaluate the quality of the ambiguity lexicons and of the resulting test suite on all submissions from 9 language pairs presented in the WMT19 news shared translation task, plus on other 5 language pairs using NMT pretrained models. The MuCoW test suite is available at http://github.com/Helsinki-NLP/MuCoW.
This paper describes the University of Helsinki Language Technology group’s participation in the WMT 2019 parallel corpus filtering task. Our scores were produced using a two-step strategy. First, we individually applied a series of filters to remove the ‘bad’ quality sentences. Then, we produced scores for each sentence by weighting these features with a classification model. This methodology allowed us to build a simple and reliable system that is easily adaptable to other language pairs.
In this paper we introduce a new natural language processing dataset and benchmark for predicting prosodic prominence from written text. To our knowledge this will be the largest publicly available dataset with prosodic labels. We describe the dataset construction and the resulting benchmark dataset in detail and train a number of different models ranging from feature-based classifiers to neural network systems for the prediction of discretized prosodic prominence. We show that pre-trained contextualized word representations from BERT outperform the other models even with less than 10% of the training data. Finally we discuss the dataset in light of the results and point to future research and plans for further improving both the dataset and methods of predicting prosodic prominence from text. The dataset and the code for the models will be made publicly available.
This paper presents a flexible and powerful system for creating parallel corpora and for running neural machine translation services. Our package provides a scalable data repository backend that offers transparent data pre-processing pipelines and automatic alignment procedures that facilitate the compilation of extensive parallel data sets from a variety of sources. Moreover, we develop a web-based interface that constitutes an intuitive frontend for end-users of the platform. The whole system can easily be distributed over virtual machines and implements a sophisticated permission system with secure connections and a flexible database for storing arbitrary metadata. Furthermore, we also provide an interface for neural machine translation that can run as a service on virtual machines, which also incorporates a connection to the data repository software.
This paper describes the MeMAD project entry to the IWSLT Speech Translation Shared Task, addressing the translation of English audio into German text. Between the pipeline and end-to-end model tracks, we participated only in the former, with three contrastive systems. We tried also the latter, but were not able to finish our end-to-end model in time. All of our systems start by transcribing the audio into text through an automatic speech recognition (ASR) model trained on the TED-LIUM English Speech Recognition Corpus (TED-LIUM). Afterwards, we feed the transcripts into English-German text-based neural machine translation (NMT) models. Our systems employ three different translation models trained on separate training sets compiled from the English-German part of the TED Speech Translation Corpus (TED-TRANS) and the OPENSUBTITLES2018 section of the OPUS collection. In this paper, we also describe the experiments leading up to our final systems. Our experiments indicate that using OPENSUBTITLES2018 in training significantly improves translation performance. We also experimented with various preand postprocessing routines for the NMT module, but we did not have much success with these. Our best-scoring system attains a BLEU score of 16.45 on the test set for this year’s task.
We present the results and the findings of the Second VarDial Evaluation Campaign on Natural Language Processing (NLP) for Similar Languages, Varieties and Dialects. The campaign was organized as part of the fifth edition of the VarDial workshop, collocated with COLING’2018. This year, the campaign included five shared tasks, including two task re-runs – Arabic Dialect Identification (ADI) and German Dialect Identification (GDI) –, and three new tasks – Morphosyntactic Tagging of Tweets (MTT), Discriminating between Dutch and Flemish in Subtitles (DFS), and Indo-Aryan Language Identification (ILI). A total of 24 teams submitted runs across the five shared tasks, and contributed 22 system description papers, which were included in the VarDial workshop proceedings and are referred to in this report.
This paper presents multiple methods for normalizing the most deviant and infrequent historical spellings in a corpus consisting of personal correspondence from the 15th to the 19th century. The methods include machine translation (neural and statistical), edit distance and rule-based FST. Different normalization methods are compared and evaluated. All of the methods have their own strengths in word normalization. This calls for finding ways of combining the results from these methods to leverage their individual strengths.
The attention mechanism is a successful technique in modern NLP, especially in tasks like machine translation. The recently proposed network architecture of the Transformer is based entirely on attention mechanisms and achieves new state of the art results in neural machine translation, outperforming other sequence-to-sequence models. However, so far not much is known about the internal properties of the model and the representations it learns to achieve that performance. To study this question, we investigate the information that is learned by the attention mechanism in Transformer models with different translation quality. We assess the representations of the encoder by extracting dependency relations based on self-attention weights, we perform four probing tasks to study the amount of syntactic and semantic captured information and we also test attention in a transfer learning scenario. Our analysis sheds light on the relative strengths and weaknesses of the various encoder representations. We observe that specific attention heads mark syntactic dependency relations and we can also confirm that lower layers tend to learn more about syntax while higher layers tend to encode more semantics.
This paper introduces a gamified framework for fine-grained sentiment analysis and emotion detection. We present a flexible tool, Sentimentator, that can be used for efficient annotation based on crowd sourcing and a self-perpetuating gold standard. We also present a novel dataset with multi-dimensional annotations of emotions and sentiments in movie subtitles that enables research on sentiment preservation across languages and the creation of robust multilingual emotion detection tools. The tools and datasets are public and open-source and can easily be extended and applied for various purposes.
This paper describes the University of Helsinki’s submissions to the WMT18 shared news translation task for English-Finnish and English-Estonian, in both directions. This year, our main submissions employ a novel neural architecture, the Transformer, using the open-source OpenNMT framework. Our experiments couple domain labeling and fine tuned multilingual models with shared vocabularies between the source and target language, using the provided parallel data of the shared task and additional back-translations. Finally, we compare, for the English-to-Finnish case, the effectiveness of different machine translation architectures, starting from a rule-based approach to our best neural model, analyzing the output and highlighting future research.
This paper describes the MeMAD project entry to the WMT Multimodal Machine Translation Shared Task. We propose adapting the Transformer neural machine translation (NMT) architecture to a multi-modal setting. In this paper, we also describe the preliminary experiments with text-only translation systems leading us up to this choice. We have the top scoring system for both English-to-German and English-to-French, according to the automatic metrics for flickr18. Our experiments show that the effect of the visual features in our system is small. Our largest gains come from the quality of the underlying text-only NMT system. We find that appropriate use of additional data is effective.
We present a character-based model for joint segmentation and POS tagging for Chinese. The bidirectional RNN-CRF architecture for general sequence tagging is adapted and applied with novel vector representations of Chinese characters that capture rich contextual information and lower-than-character level features. The proposed model is extensively evaluated and compared with a state-of-the-art tagger respectively on CTB5, CTB9 and UD Chinese. The experimental results indicate that our model is accurate and robust across datasets in different sizes, genres and annotation schemes. We obtain state-of-the-art performance on CTB5, achieving 94.38 F1-score for joint segmentation and POS tagging.
Most existing models for multilingual natural language processing (NLP) treat language as a discrete category, and make predictions for either one language or the other. In contrast, we propose using continuous vector representations of language. We show that these can be learned efficiently with a character-based neural language model, and used to improve inference about language varieties not seen during training. In experiments with 1303 Bible translations into 990 different languages, we empirically explore the capacity of multilingual language models, and also show that the language vectors capture genetic relationships between languages.
We present the results of the VarDial Evaluation Campaign on Natural Language Processing (NLP) for Similar Languages, Varieties and Dialects, which we organized as part of the fourth edition of the VarDial workshop at EACL’2017. This year, we included four shared tasks: Discriminating between Similar Languages (DSL), Arabic Dialect Identification (ADI), German Dialect Identification (GDI), and Cross-lingual Dependency Parsing (CLP). A total of 19 teams submitted runs across the four tasks, and 15 of them wrote system description papers.
This paper describes the submission from the University of Helsinki to the shared task on cross-lingual dependency parsing at VarDial 2017. We present work on annotation projection and treebank translation that gave good results for all three target languages in the test set. In particular, Slovak seems to work well with information coming from the Czech treebank, which is in line with related work. The attachment scores for cross-lingual models even surpass the fully supervised models trained on the target language treebank. Croatian is the most difficult language in the test set and the improvements over the baseline are rather modest. Norwegian works best with information coming from Swedish whereas Danish contributes surprisingly little.
We describe the design, the setup, and the evaluation results of the DiscoMT 2017 shared task on cross-lingual pronoun prediction. The task asked participants to predict a target-language pronoun given a source-language pronoun in the context of a sentence. We further provided a lemmatized target-language human-authored translation of the source sentence, and automatic word alignments between the source sentence words and the target-language lemmata. The aim of the task was to predict, for each target-language pronoun placeholder, the word that should replace it from a small, closed set of classes, using any type of information that can be extracted from the entire document. We offered four subtasks, each for a different language pair and translation direction: English-to-French, English-to-German, German-to-English, and Spanish-to-English. Five teams participated in the shared task, making submissions for all language pairs. The evaluation results show that most participating teams outperformed two strong n-gram-based language model-based baseline systems by a sizable margin.
We investigate the use of extended context in attention-based neural machine translation. We base our experiments on translated movie subtitles and discuss the effect of increasing the segments beyond single translation units. We study the use of extended source language context as well as bilingual context extensions. The models learn to distinguish between information from different segments and are surprisingly robust with respect to translation quality. In this pilot study, we observe interesting cross-sentential attention patterns that improve textual coherence in translation at least in some selected cases.
This paper presents on-going work on creating NLP tools for under-resourced languages from very sparse training data coming from linguistic field work. In this work, we focus on Ingush, a Nakh-Daghestanian language spoken by about 300,000 people in the Russian republics Ingushetia and Chechnya. We present work on morphosyntactic taggers trained on transcribed and linguistically analyzed recordings and dependency parsers using English glosses to project annotation for creating synthetic treebanks. Our preliminary results are promising, supporting the goal of bootstrapping efficient NLP tools with limited or no task-specific annotated data resources available.
This paper outlines a pilot study on multi-dimensional and multilingual sentiment analysis of social media content. We use parallel corpora of movie subtitles as a proxy for colloquial language in social media channels and a multilingual emotion lexicon for fine-grained sentiment analyses. Parallel data sets make it possible to study the preservation of sentiments and emotions in translation and our assessment reveals that the lexical approach shows great inter-language agreement. However, our manual evaluation also suggests that the use of purely lexical methods is limited and further studies are necessary to pinpoint the cross-lingual differences and to develop better sentiment classifiers.
We present the results of the third edition of the Discriminating between Similar Languages (DSL) shared task, which was organized as part of the VarDial’2016 workshop at COLING’2016. The challenge offered two subtasks: subtask 1 focused on the identification of very similar languages and language varieties in newswire texts, whereas subtask 2 dealt with Arabic dialect identification in speech transcripts. A total of 37 teams registered to participate in the task, 24 teams submitted test results, and 20 teams also wrote system description papers. High-order character n-grams were the most successful feature, and the best classification approaches included traditional supervised learning methods such as SVM, logistic regression, and language models, while deep learning approaches did not perform very well.
We present a new major release of the OpenSubtitles collection of parallel corpora. The release is compiled from a large database of movie and TV subtitles and includes a total of 1689 bitexts spanning 2.6 billion sentences across 60 languages. The release also incorporates a number of enhancements in the preprocessing and alignment of the subtitles, such as the automatic correction of OCR errors and the use of meta-data to estimate the quality of each subtitle and score subtitle pairs.
OpenSubtitles.org provides a large collection of user contributed subtitles in various languages for movies and TV programs. Subtitle translations are valuable resources for cross-lingual studies and machine translation research. A less explored feature of the collection is the inclusion of alternative translations, which can be very useful for training paraphrase systems or collecting multi-reference test suites for machine translation. However, differences in translation may also be due to misspellings, incomplete or corrupt data files, or wrongly aligned subtitles. This paper reports our efforts in recognising and classifying alternative subtitle translations with language independent techniques. We use time-based alignment with lexical re-synchronisation techniques and BLEU score filters and sort alternative translations into categories using edit distance metrics and heuristic rules. Our approach produces large numbers of sentence-aligned translation alternatives for over 50 languages provided via the OPUS corpus collection.
We present ParCor, a parallel corpus of texts in which pronoun coreference ― reduced coreference in which pronouns are used as referring expressions ― has been annotated. The corpus is intended to be used both as a resource from which to learn systematic differences in pronoun use between languages and ultimately for developing and testing informed Statistical Machine Translation systems aimed at addressing the problem of pronoun coreference in translation. At present, the corpus consists of a collection of parallel English-German documents from two different text genres: TED Talks (transcribed planned speech), and EU Bookshop publications (written text). All documents in the corpus have been manually annotated with respect to the type and location of each pronoun and, where relevant, its antecedent. We provide details of the texts that we selected, the guidelines and tools used to support annotation and some corpus statistics. The texts in the corpus have already been translated into many languages, and we plan to expand the corpus into these other languages, as well as other genres, in the future.
The European Union is a great source of high quality documents with translations into several languages. Parallel corpora from its publications are frequently used in various tasks, machine translation in particular. A source that has not systematically been explored yet is the EU Bookshop ― an online service and archive of publications from various European institutions. The service contains a large body of publications in the 24 official of the EU. This paper describes our efforts in collecting those publications and converting them to a format that is useful for natural language processing in particular statistical machine translation. We report our procedure of crawling the website and various pre-processing steps that were necessary to clean up the data after the conversion from the original PDF files. Furthermore, we demonstrate the use of this dataset in training SMT models for English, French, German, Spanish, and Latvian.
In this paper, we present the architecture of a distributed resource repository developed for collecting training data for building customized statistical machine translation systems. The repository is designed for the cloud-based translation service integrated in the Let'sMT! platform which is about to be launched to the public. The system includes important features such as automatic import and alignment of textual documents in a variety of formats, a flexible database for meta-information using modern key-value stores and a grid-based backend for running off-line processes. The entire system is very modular and supports highly distributed setups to enable a maximum of flexibility and scalability. The system uses secure connections and includes an effective permission management to ensure data integrity. In this paper, we also take a closer look at the task of sentence alignment. The process of alignment is extremely important for the success of translation models trained on the platform. Alignment decisions significantly influence the quality of SMT engines.
This paper presents the current status of OPUS, a growing language resource of parallel corpora and related tools. The focus in OPUS is to provide freely available data sets in various formats together with basic annotation to be useful for applications in computational linguistics, translation studies and cross-linguistic corpus studies. In this paper, we report about new data sets and their features, additional annotation tools and models provided from the website and essential interfaces and on-line services included in the project.
We present a collection of parallel treebanks that have been automatically aligned on both the terminal and the nonterminal constituent level for use in syntax-based machine translation. We describe how they were constructed and applied to a syntax- and example-based machine translation system called Parse and Corpus-Based Machine Translation (PaCo-MT). For the language pair Dutch to English, we present evaluation scores of both the nonterminal constituent alignments and the MT system itself, and in the latter case, compare them with those of Moses, a current state-of-the-art statistical MT system, when trained on the same data.
In this paper we present an experimental toolbox for automatic tree-to-tree alignment based on a binary classification model. The aligner implements a recurrent architecture for structural prediction using history features and a sequential classification procedure. The discriminative base classifier uses a log-linear model in the current setup which enables simple integration of various features extracted from the data. The Lingua-Align toolbox provides a flexible framework for feature extraction including contextual properties and implements several alignment inference procedures. Various settings and constraints can be controlled via a simple frontend or called from external scripts. Lingua-Align supports different treebank formats and includes additional tools for conversion and evaluation. In our experiments we can show that our tree aligner produces results with high quality and outperforms unsupervised techniques proposed otherwise. It also integrates well with another existing tool for manual tree alignment which makes it possible to quickly integrate additional training material and to run semi-automatic alignment strategies.
This paper addresses the problem of synchronizing movie subtitles, which is necessary to improve alignment quality when building a parallel corpus out of translated subtitles. In particular, synchronization is done on the basis of aligned anchor points. Previous studies have shown that cognate filters are useful for the identification of such points. However, this restricts the approach to related languages with similar alphabets. Here, we propose a dictionary-based approach using automatic word alignment. We can show an improvement in alignment quality even for related languages compared to the cognate-based approach.
ISA and ICA are two web interfaces for interactive alignment of parallel texts. ISA provides an interface for automatic and manual sentence alignment. It includes cognate filters and uses structural markup to improve automatic alignment and provides intuitive tools for editing them. Alignment results can be saved to disk or sent via e-mail. ICA provides an interface to the clue aligner from the Uplug toolbox. It allows one to set various parameters and visualizes alignment results in a two-dimensional matrix. Word alignments can be edited and saved to disk.
The OPUS corpus is a growing collection of translated documents collected from the internet. The current version contains about 30 million words in 60 languages. The entire corpus is sentence aligned and it also contains linguistic markup for certain languages.