José Ramom Pichel Campos

Also published as: José Ramom Pichel, Jose Ramom Pichel, Jose Ramom Pichel Campos, José Ramom Pichel Campos


2024

pdf bib
Exploring the effects of vocabulary size in neural machine translation: Galician as a target language
Daniel Bardanca Outeirinho | Pablo Gamallo Otero | Iria de-Dios-Flores | José Ramom Pichel Campos
Proceedings of the 16th International Conference on Computational Processing of Portuguese - Vol. 1

pdf bib
Training and Fine-Tuning NMT Models for Low-Resource Languages Using Apertium-Based Synthetic Corpora
Aleix Sant | Daniel Bardanca | José Ramom Pichel Campos | Francesca De Luca Fornaciari | Carlos Escolano | Javier Garcia Gilabert | Pablo Gamallo | Audrey Mash | Xixian Liao | Maite Melero
Proceedings of the Ninth Conference on Machine Translation

In this paper, we present the two strategies employed for the WMT24 Shared Task on Translation into Low-Resource Languages of Spain. We participated in the language pairs of Spanish-to-Aragonese, Spanish-to-Aranese, and Spanish-to-Asturian, developing neural-based translation systems and moving away from rule-based approaches for these language directions. To create these models, two distinct strategies were employed. The first strategy involved a thorough cleaning process and curation of the limited provided data, followed by fine-tuning the multilingual NLLB-200-600M model (Constrained Submission). The other strategy involved training a transformer from scratch using a vast amount of synthetic data (Open Submission). Both approaches relied on generated synthetic data and resulted in high ChrF and BLEU scores. However, given the characteristics of the task, the strategy used in the Constrained Submission resulted in higher scores that surpassed the baselines across the three translation directions, whereas the strategy employed in the Open Submission yielded slightly lower scores than the highest baseline.

2022

pdf bib
The Nós Project: Opening routes for the Galician language in the field of language technologies
Iria de-Dios-Flores | Carmen Magariños | Adina Ioana Vladu | John E. Ortega | José Ramom Pichel | Marcos García | Pablo Gamallo | Elisa Fernández Rei | Alberto Bugarín-Diz | Manuel González González | Senén Barro | Xosé Luis Regueira
Proceedings of the Workshop Towards Digital Language Equality within the 13th Language Resources and Evaluation Conference

The development of language technologies (LTs) such as machine translation, text analytics, and dialogue systems is essential in the current digital society, culture and economy. These LTs, widely supported in languages in high demand worldwide, such as English, are also necessary for smaller and less economically powerful languages, as they are a driving force in the democratization of the communities that use them due to their great social and cultural impact. As an example, dialogue systems allow us to communicate with machines in our own language; machine translation increases access to contents in different languages, thus facilitating intercultural relations; and text-to-speech and speech-to-text systems broaden different categories of users’ access to technology. In the case of Galician (co-official language, together with Spanish, in the autonomous region of Galicia, located in northwestern Spain), incorporating the language into state-of-the-art AI applications can not only significantly favor its prestige (a decisive factor in language normalization), but also guarantee citizens’ language rights, reduce social inequality, and narrow the digital divide. This is the main motivation behind the Nós Project (Proxecto Nós), which aims to have a significant contribution to the development of LTs in Galician (currently considered a low-resource language) by providing openly licensed resources, tools, and demonstrators in the area of intelligent technologies.

2019

pdf bib
Contextualized Translations of Phrasal Verbs with Distributional Compositional Semantics and Monolingual Corpora
Pablo Gamallo | Susana Sotelo | José Ramom Pichel | Mikel Artetxe
Computational Linguistics, Volume 45, Issue 3 - September 2019

This article describes a compositional distributional method to generate contextualized senses of words and identify their appropriate translations in the target language using monolingual corpora. Word translation is modeled in the same way as contextualization of word meaning, but in a bilingual vector space. The contextualization of meaning is carried out by means of distributional composition within a structured vector space with syntactic dependencies, and the bilingual space is created by means of transfer rules and a bilingual dictionary. A phrase in the source language, consisting of a head and a dependent, is translated into the target language by selecting both the nearest neighbor of the head given the dependent, and the nearest neighbor of the dependent given the head. This process is expanded to larger phrases by means of incremental composition. Experiments were performed on English and Spanish monolingual corpora in order to translate phrasal verbs in context. A new bilingual data set to evaluate strategies aimed at translating phrasal verbs in restricted syntactic domains has been created and released.

2018

pdf bib
Measuring language distance among historical varieties using perplexity. Application to European Portuguese.
Jose Ramom Pichel Campos | Pablo Gamallo | Iñaki Alegria
Proceedings of the Fifth Workshop on NLP for Similar Languages, Varieties and Dialects (VarDial 2018)

The objective of this work is to quantify, with a simple and robust measure, the distance between historical varieties of a language. The measure will be inferred from text corpora corresponding to historical periods. Different approaches have been proposed for similar aims: Language Identification, Phylogenetics, Historical Linguistics or Dialectology. In our approach, we used a perplexity-based measure to calculate language distance between all the historical periods of a specific language: European Portuguese. Perplexity has also proven to be a robust metric to calculate distance between languages. However, this measure has not been tested yet to identify diachronic periods within the historical evolution of a specific language. For this purpose, a historical Portuguese corpus has been constructed from different open sources containing texts with close original spelling. The results of our experiments show that Portuguese keeps an important degree of homogeneity over time. We anticipate this metric to be a starting point to be applied to other languages.

2017

pdf bib
A Perplexity-Based Method for Similar Languages Discrimination
Pablo Gamallo | Jose Ramom Pichel | Iñaki Alegria
Proceedings of the Fourth Workshop on NLP for Similar Languages, Varieties and Dialects (VarDial)

This article describes the system submitted by the Citius_Ixa_Imaxin team to the VarDial 2017 (DSL and GDI tasks). The strategy underlying our system is based on a language distance computed by means of model perplexity. The best model configuration we have tested is a voting system making use of several n-grams models of both words and characters, even if word unigrams turned out to be a very competitive model with reasonable results in the tasks we have participated. An error analysis has been performed in which we identified many test examples with no linguistic evidences to distinguish among the variants.

2016

pdf bib
Comparing Two Basic Methods for Discriminating Between Similar Languages and Varieties
Pablo Gamallo | Iñaki Alegria | José Ramom Pichel | Manex Agirrezabal
Proceedings of the Third Workshop on NLP for Similar Languages, Varieties and Dialects (VarDial3)

This article describes the systems submitted by the Citius_Ixa_Imaxin team to the Discriminating Similar Languages Shared Task 2016. The systems are based on two different strategies: classification with ranked dictionaries and Naive Bayes classifiers. The results of the evaluation show that ranking dictionaries are more sound and stable across different domains while basic bayesian models perform reasonably well on in-domain datasets, but their performance drops when they are applied on out-of-domain texts.