Josephine Tumwesige


pdf bib
Building Representative Corpora from Illiterate Communities: A Reviewof Challenges and Mitigation Strategies for Developing Countries
Stephanie Hirmer | Alycia Leonard | Josephine Tumwesige | Costanza Conforti
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

Most well-established data collection methods currently adopted in NLP depend on the as- sumption of speaker literacy. Consequently, the collected corpora largely fail to represent swathes of the global population, which tend to be some of the most vulnerable and marginalised people in society, and often live in rural developing areas. Such underrepresented groups are thus not only ignored when making modeling and system design decisions, but also prevented from benefiting from development outcomes achieved through data-driven NLP. This paper aims to address the under-representation of illiterate communities in NLP corpora: we identify potential biases and ethical issues that might arise when collecting data from rural communities with high illiteracy rates in Low-Income Countries, and propose a set of practical mitigation strategies to help future work.