Juan Antonio Pérez-Ortiz


2021

pdf bib
Surprise Language Challenge: Developing a Neural Machine Translation System between Pashto and English in Two Months
Alexandra Birch | Barry Haddow | Antonio Valerio Miceli Barone | Jindrich Helcl | Jonas Waldendorf | Felipe Sánchez Martínez | Mikel Forcada | Víctor Sánchez Cartagena | Juan Antonio Pérez-Ortiz | Miquel Esplà-Gomis | Wilker Aziz | Lina Murady | Sevi Sariisik | Peggy van der Kreeft | Kay Macquarrie
Proceedings of Machine Translation Summit XVIII: Research Track

In the media industry and the focus of global reporting can shift overnight. There is a compelling need to be able to develop new machine translation systems in a short period of time and in order to more efficiently cover quickly developing stories. As part of the EU project GoURMET and which focusses on low-resource machine translation and our media partners selected a surprise language for which a machine translation system had to be built and evaluated in two months(February and March 2021). The language selected was Pashto and an Indo-Iranian language spoken in Afghanistan and Pakistan and India. In this period we completed the full pipeline of development of a neural machine translation system: data crawling and cleaning and aligning and creating test sets and developing and testing models and and delivering them to the user partners. In this paperwe describe rapid data creation and experiments with transfer learning and pretraining for this low-resource language pair. We find that starting from an existing large model pre-trained on 50languages leads to far better BLEU scores than pretraining on one high-resource language pair with a smaller model. We also present human evaluation of our systems and which indicates that the resulting systems perform better than a freely available commercial system when translating from English into Pashto direction and and similarly when translating from Pashto into English.

pdf bib
MultiTraiNMT: Training Materials to Approach Neural Machine Translation from Scratch
Gema Ramírez-Sánchez | Juan Antonio Pérez-Ortiz | Felipe Sánchez-Martínez | Caroline Rossi | Dorothy Kenny | Riccardo Superbo | Pilar Sánchez-Gijón | Olga Torres-Hostench
Proceedings of the Translation and Interpreting Technology Online Conference

The MultiTraiNMT Erasmus+ project aims at developing an open innovative syllabus in neural machine translation (NMT) for language learners and translators as multilingual citizens. Machine translation is seen as a resource that can support citizens in their attempt to acquire and develop language skills if they are trained in an informed and critical way. Machine translation could thus help tackle the mismatch between the desired EU aim of having multilingual citizens who speak at least two foreign languages and the current situation in which citizens generally fall far short of this objective. The training materials consists of an open-access coursebook, an open-source NMT web application called MutNMT for training purposes, and corresponding activities.

pdf bib
Rethinking Data Augmentation for Low-Resource Neural Machine Translation: A Multi-Task Learning Approach
Víctor M. Sánchez-Cartagena | Miquel Esplà-Gomis | Juan Antonio Pérez-Ortiz | Felipe Sánchez-Martínez
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

In the context of neural machine translation, data augmentation (DA) techniques may be used for generating additional training samples when the available parallel data are scarce. Many DA approaches aim at expanding the support of the empirical data distribution by generating new sentence pairs that contain infrequent words, thus making it closer to the true data distribution of parallel sentences. In this paper, we propose to follow a completely different approach and present a multi-task DA approach in which we generate new sentence pairs with transformations, such as reversing the order of the target sentence, which produce unfluent target sentences. During training, these augmented sentences are used as auxiliary tasks in a multi-task framework with the aim of providing new contexts where the target prefix is not informative enough to predict the next word. This strengthens the encoder and forces the decoder to pay more attention to the source representations of the encoder. Experiments carried out on six low-resource translation tasks show consistent improvements over the baseline and over DA methods aiming at extending the support of the empirical data distribution. The systems trained with our approach rely more on the source tokens, are more robust against domain shift and suffer less hallucinations.

2020

pdf bib
Understanding the effects of word-level linguistic annotations in under-resourced neural machine translation
Víctor M. Sánchez-Cartagena | Juan Antonio Pérez-Ortiz | Felipe Sánchez-Martínez
Proceedings of the 28th International Conference on Computational Linguistics

This paper studies the effects of word-level linguistic annotations in under-resourced neural machine translation, for which there is incomplete evidence in the literature. The study covers eight language pairs, different training corpus sizes, two architectures, and three types of annotation: dummy tags (with no linguistic information at all), part-of-speech tags, and morpho-syntactic description tags, which consist of part of speech and morphological features. These linguistic annotations are interleaved in the input or output streams as a single tag placed before each word. In order to measure the performance under each scenario, we use automatic evaluation metrics and perform automatic error classification. Our experiments show that, in general, source-language annotations are helpful and morpho-syntactic descriptions outperform part of speech for some language pairs. On the contrary, when words are annotated in the target language, part-of-speech tags systematically outperform morpho-syntactic description tags in terms of automatic evaluation metrics, even though the use of morpho-syntactic description tags improves the grammaticality of the output. We provide a detailed analysis of the reasons behind this result.

pdf bib
An English-Swahili parallel corpus and its use for neural machine translation in the news domain
Felipe Sánchez-Martínez | Víctor M. Sánchez-Cartagena | Juan Antonio Pérez-Ortiz | Mikel L. Forcada | Miquel Esplà-Gomis | Andrew Secker | Susie Coleman | Julie Wall
Proceedings of the 22nd Annual Conference of the European Association for Machine Translation

This paper describes our approach to create a neural machine translation system to translate between English and Swahili (both directions) in the news domain, as well as the process we followed to crawl the necessary parallel corpora from the Internet. We report the results of a pilot human evaluation performed by the news media organisations participating in the H2020 EU-funded project GoURMET.

2019

pdf bib
The Universitat d’Alacant Submissions to the English-to-Kazakh News Translation Task at WMT 2019
Víctor M. Sánchez-Cartagena | Juan Antonio Pérez-Ortiz | Felipe Sánchez-Martínez
Proceedings of the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1)

This paper describes the two submissions of Universitat d’Alacant to the English-to-Kazakh news translation task at WMT 2019. Our submissions take advantage of monolingual data and parallel data from other language pairs by means of iterative backtranslation, pivot backtranslation and transfer learning. They also use linguistic information in two ways: morphological segmentation of Kazakh text, and integration of the output of a rule-based machine translation system. Our systems were ranked second in terms of chrF++ despite being built from an ensemble of only 2 independent training runs.

pdf bib
Global Under-Resourced Media Translation (GoURMET)
Alexandra Birch | Barry Haddow | Ivan Tito | Antonio Valerio Miceli Barone | Rachel Bawden | Felipe Sánchez-Martínez | Mikel L. Forcada | Miquel Esplà-Gomis | Víctor Sánchez-Cartagena | Juan Antonio Pérez-Ortiz | Wilker Aziz | Andrew Secker | Peggy van der Kreeft
Proceedings of Machine Translation Summit XVII: Translator, Project and User Tracks

2016

pdf bib
Ranking suggestions for black-box interactive translation prediction systems with multilayer perceptrons
Daniel Torregrosa | Juan Antonio Pérez-Ortiz | Mikel Forcada
Conferences of the Association for Machine Translation in the Americas: MT Researchers' Track

The objective of interactive translation prediction (ITP), a paradigm of computer-aided translation, is to assist professional translators by offering context-based computer-generated suggestions as they type. While most state-of-the-art ITP systems are tightly coupled to a machine translation (MT) system (often created ad-hoc for this purpose), our proposal follows a resourceagnostic approach, one that does not need access to the inner workings of the bilingual resources (MT systems or any other bilingual resources) used to generate the suggestions, thus allowing to include new resources almost seamlessly. As we do not expect the user to tolerate more than a few proposals each time, the set of potential suggestions need to be filtered and ranked; the resource-agnostic approach has been evaluated before using a set of intuitive length-based and position-based heuristics designed to determine which suggestions to show, achieving promising results. In this paper, we propose a more principled suggestion ranking approach using a regressor (a multilayer perceptron) that achieves significantly better results.

pdf bib
Stand-off Annotation of Web Content as a Legally Safer Alternative to Crawling for Distribution
Mikel L. Forcada | Miquel Esplà-Gomis | Juan Antonio Pérez-Ortiz
Proceedings of the 19th Annual Conference of the European Association for Machine Translation

2015

pdf bib
Evaluating machine translation for assimilation via a gap-filling task
Ekaterina Ageeva | Francis M. Tyers | Mikel L. Forcada | Juan Antonio Pérez-Ortiz
Proceedings of the 18th Annual Conference of the European Association for Machine Translation

pdf bib
Evaluating machine translation for assimilation via a gap-filling task
Ekaterina Ageeva | Mikel L. Forcada | Francis M. Tyers | Juan Antonio Pérez-Ortiz
Proceedings of the 18th Annual Conference of the European Association for Machine Translation

2014

pdf bib
Black-box integration of heterogeneous bilingual resources into an interactive translation system
Juan Antonio Pérez-Ortiz | Daniel Torregrosa | Mikel Forcada
Proceedings of the EACL 2014 Workshop on Humans and Computer-assisted Translation

pdf bib
The UA-Prompsit hybrid machine translation system for the 2014 Workshop on Statistical Machine Translation
Víctor M. Sánchez-Cartagena | Juan Antonio Pérez-Ortiz | Felipe Sánchez-Martínez
Proceedings of the Ninth Workshop on Statistical Machine Translation

pdf bib
An efficient method to assist non-expert users in extending dictionaries by assigning stems and inflectional paradigms to unknknown words
Miquel Esplà-Gomis | Víctor M. Sánchez-Cartegna | Felipe Sánchez-Martínez | Rafael C. Carrasco | Mikel L. Forcada | Juan Antonio Pérez-Ortiz
Proceedings of the 17th Annual conference of the European Association for Machine Translation

2012

pdf bib
Source-Language Dictionaries Help Non-Expert Users to Enlarge Target-Language Dictionaries for Machine Translation
Víctor M. Sánchez-Cartagena | Miquel Esplà-Gomis | Juan Antonio Pérez-Ortiz
Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC'12)

In this paper, a previous work on the enlargement of monolingual dictionaries of rule-based machine translation systems by non-expert users is extended to tackle the complete task of adding both source-language and target-language words to the monolingual dictionaries and the bilingual dictionary. In the original method, users validate whether some suffix variations of the word to be inserted are correct in order to find the most appropriate inflection paradigm. This method is now improved by taking advantage from the strong correlation detected between paradigms in both languages to reduce the search space of the target-language paradigm once the source-language paradigm is known. Results show that, when the source-language word has already been inserted, the system is able to more accurately predict which is the right target-language paradigm, and the number of queries posed to users is significantly reduced. Experiments also show that, when the source language and the target language are not closely related, it is only the source-language part-of-speech category, but not the rest of information provided by the source-language paradigm, which helps to correctly classify the target-language word.

2011

pdf bib
Multimodal Building of Monolingual Dictionaries for Machine Translation by Non-Expert Users
Miquel Esplà-Gomis | Víctor M. Sánchez-Cartagena | Juan Antonio Pérez-Ortiz
Proceedings of Machine Translation Summit XIII: Papers

pdf bib
Integrating shallow-transfer rules into phrase-based statistical machine translation
Víctor M. Sánchez-Cartagena | Felipe Sánchez-Martínez | Juan Antonio Pérez-Ortiz
Proceedings of Machine Translation Summit XIII: Papers

pdf bib
The Universitat d’Alacant hybrid machine translation system for WMT 2011
Víctor M. Sánchez-Cartagena | Felipe Sánchez-Martínez | Juan Antonio Pérez-Ortiz
Proceedings of the Sixth Workshop on Statistical Machine Translation

pdf bib
Enriching a statistical machine translation system trained on small parallel corpora with rule-based bilingual phrases
Víctor M. Sánchez-Cartagena | Felipe Sánchez-Martínez | Juan Antonio Pérez-Ortiz
Proceedings of the International Conference Recent Advances in Natural Language Processing 2011

pdf bib
Enlarging Monolingual Dictionaries for Machine Translation with Active Learning and Non-Expert Users
Miquel Esplà-Gomis | Víctor M. Sánchez-Cartagena | Juan Antonio Pérez-Ortiz
Proceedings of the International Conference Recent Advances in Natural Language Processing 2011

pdf bib
Proceedings of the Second International Workshop on Free/Open-Source Rule-Based Machine Translation
Felipe Sánchez-Martinez | Juan Antonio Pérez-Ortiz
Proceedings of the Second International Workshop on Free/Open-Source Rule-Based Machine Translation

2009

pdf bib
Proceedings of the First International Workshop on Free/Open-Source Rule-Based Machine Translation
Juan Antonio Pérez-Ortiz | Felipe Sánchez-Martinez | Francis M. Tyers
Proceedings of the First International Workshop on Free/Open-Source Rule-Based Machine Translation

pdf bib
An open-source highly scalable web service architecture for the Apertium machine translation engine
Victor M. Sánchez-Cartagena | Juan Antonio Pérez-Ortiz
Proceedings of the First International Workshop on Free/Open-Source Rule-Based Machine Translation

Some machine translation services like Google Ajax Language API have become very popular as they make the collaboratively created contents of the web 2.0 available to speakers of many languages. One of the keys of its success is its clear and easy-to-use application programming interface (API) and a scalable and reliable service. This paper describes a highly scalable implementation of an Apertium-based translation web service, that aims to make contents available to speakers of lesser resourced languages. The API of this service is compatible with Google’s one, and the scalability of the system is achieved by a new architecture that allows adding or removing new servers at any time; for that, an application placement algorithm which decides which language pairs should be translated on which servers is designed. Our experiments show how the resulting architecture improves the translation rate in comparison to existing Apertium-based servers.

2005

pdf bib
An open-source shallow-transfer machine translation engine for the Romance languages of Spain
Antonio M. Corbi-Bellot | Mikel L. Forcada | Sergio Ortíz-Rojas | Juan Antonio Pérez-Ortiz | Gema Ramírez-Sánchez | Felipe Sánchez-Martínez | Iñaki Alegria | Aingeru Mayor | Kepa Sarasola
Proceedings of the 10th EAMT Conference: Practical applications of machine translation

pdf bib
An Open-Source Shallow-Transfer Machine Translation Toolbox: Consequences of Its Release and Availability
Carme Armentano-Oller | Antonio M. Corbí-Bellot | Mikel L. Forcada | Mireia Ginestí-Rosell | Boyan Bonev | Sergio Ortiz-Rojas | Juan Antonio Pérez-Ortiz | Gema Ramírez-Sánchez | Felipe Sánchez-Martínez
Workshop on open-source machine translation

By the time Machine Translation Summit X is held in September 2005, our group will have released an open-source machine translation toolbox as part of a large government-funded project involving four universities and three linguistic technology companies from Spain. The machine translation toolbox, which will most likely be released under a GPL-like license includes (a) the open-source engine itself, a modular shallow-transfer machine translation engine suitable for related languages and largely based upon that of systems we have already developed, such as interNOSTRUM for Spanish—Catalan and Traductor Universia for Spanish—Portuguese, (b) extensive documentation (including document type declarations) specifying the XML format of all linguistic (dictionaries, rules) and document format management files, (c) compilers converting these data into the high-speed (tens of thousands of words a second) format used by the engine, and (d) pilot linguistic data for Spanish—Catalan and Spanish—Galician and format management specifications for the HTML, RTF and plain text formats. After describing very briefly this toolbox, this paper aims at exploring possible consequences of the availability of this architecture, including the community-driven development of machine translation systems for languages lacking this kind of linguistic technology.

2004

pdf bib
Cooperative unsupervised training of the part-of-speech taggers in a bidirectional machine translation system
Felipe Sánchez-Martínez | Juan Antonio Pérez-Ortiz | Mikel L. Forcada
Proceedings of the 10th Conference on Theoretical and Methodological Issues in Machine Translation of Natural Languages

2001

pdf bib
Discovering machine translation strategies beyond word-for-word translation: a laboratory assignment
Juan Antonio Pérez-Ortiz | Mikel L. Forcada
Workshop on Teaching Machine Translation

It is a common mispreconception to say that machine translation programs translate word-for-word, but real systems follow strategies which are much more complex. This paper proposes a laboratory assignment to study the way in which some commercial machine translation programs translate whole sentences and how the translation differs from a word-for-word translation. Students are expected to infer some of these extra strategies by observing the outcome of real systems when translating a set of sentences designed on purpose. The assignment also makes students aware of the difficulty of constructing such programs while bringing some technological light into the apparent “magic” of machine translation.