Juan Hussain


2020

pdf bib
Supervised Adaptation of Sequence-to-Sequence Speech Recognition Systems using Batch-Weighting
Christian Huber | Juan Hussain | Tuan-Nam Nguyen | Kaihang Song | Sebastian Stüker | Alexander Waibel
Proceedings of the 2nd Workshop on Life-long Learning for Spoken Language Systems

When training speech recognition systems, one often faces the situation that sufficient amounts of training data for the language in question are available but only small amounts of data for the domain in question. This problem is even bigger for end-to-end speech recognition systems that only accept transcribed speech as training data, which is harder and more expensive to obtain than text data. In this paper we present experiments in adapting end-to-end speech recognition systems by a method which is called batch-weighting and which we contrast against regular fine-tuning, i.e., to continue to train existing neural speech recognition models on adaptation data. We perform experiments using theses techniques in adapting to topic, accent and vocabulary, showing that batch-weighting consistently outperforms fine-tuning. In order to show the generalization capabilities of batch-weighting we perform experiments in several languages, i.e., Arabic, English and German. Due to its relatively small computational requirements batch-weighting is a suitable technique for supervised life-long learning during the life-time of a speech recognition system, e.g., from user corrections.

pdf bib
DaCToR: A Data Collection Tool for the RELATER Project
Juan Hussain | Oussama Zenkri | Sebastian Stüker | Alex Waibel
Proceedings of the Twelfth Language Resources and Evaluation Conference

Collecting domain-specific data for under-resourced languages, e.g., dialects of languages, can be very expensive, potentially financially prohibitive and taking long time. Moreover, in the case of rarely written languages, the normalization of non-canonical transcription might be another time consuming but necessary task. In order to collect domain-specific data in such circumstances in a time and cost-efficient way, collecting read data of pre-prepared texts is often a viable option. In order to collect data in the domain of psychiatric diagnosis in Arabic dialects for the project RELATER, we have prepared the data collection tool DaCToR for collecting read texts by speakers in the respective countries and districts in which the dialects are spoken. In this paper we describe our tool, its purpose within the project RELATER and the dialects which we have started to collect with the tool.

pdf bib
German-Arabic Speech-to-Speech Translation for Psychiatric Diagnosis
Juan Hussain | Mohammed Mediani | Moritz Behr | M. Amin Cheragui | Sebastian Stüker | Alexander Waibel
Proceedings of the Fifth Arabic Natural Language Processing Workshop

In this paper we present the natural language processing components of our German-Arabic speech-to-speech translation system which is being deployed in the context of interpretation during psychiatric, diagnostic interviews. For this purpose we have built a pipe-lined speech-to-speech translation system consisting of automatic speech recognition, text post-processing/segmentation, machine translation and speech synthesis systems. We have implemented two pipe-lines, from German to Arabic and Arabic to German, in order to be able to conduct interpreted two-way dialogues between psychiatrists and potential patients. All systems in our pipeline have been realized as all-neural end-to-end systems, using different architectures suitable for the different components. The speech recognition systems use an encoder/decoder + attention architecture, the text segmentation component and the machine translation system are based on the Transformer architecture, and for the speech synthesis systems we use Tacotron 2 for generating spectrograms and WaveGlow as vocoder. The speech translation is deployed in a server-based speech translation application that implements a turn based translation between a German speaking psychiatrist administrating the Mini-International Neuropsychiatric Interview (M.I.N.I.) and an Arabic speaking person answering the interview. As this is a very specific domain, in addition to the linguistic challenges posed by translating between Arabic and German, we also focus in this paper on the methods we implemented for adapting our speech translation system to the domain of this psychiatric interview.

2019

pdf bib
The IWSLT 2019 KIT Speech Translation System
Ngoc-Quan Pham | Thai-Son Nguyen | Thanh-Le Ha | Juan Hussain | Felix Schneider | Jan Niehues | Sebastian Stüker | Alexander Waibel
Proceedings of the 16th International Conference on Spoken Language Translation

This paper describes KIT’s submission to the IWSLT 2019 Speech Translation task on two sub-tasks corresponding to two different datasets. We investigate different end-to-end architectures for the speech recognition module, including our new transformer-based architectures. Overall, our modules in the pipe-line are based on the transformer architecture which has recently achieved great results in various fields. In our systems, using transformer is also advantageous compared to traditional hybrid systems in term of simplicity while still having competent results.