Jue Zhang


2024

pdf bib
LLMLingua-2: Data Distillation for Efficient and Faithful Task-Agnostic Prompt Compression
Zhuoshi Pan | Qianhui Wu | Huiqiang Jiang | Menglin Xia | Xufang Luo | Jue Zhang | Qingwei Lin | Victor Rühle | Yuqing Yang | Chin-Yew Lin | H. Vicky Zhao | Lili Qiu | Dongmei Zhang
Findings of the Association for Computational Linguistics ACL 2024

This paper focuses on task-agnostic prompt compression for better generalizability and efficiency. Considering the redundancy in natural language, existing approaches compress prompts by removing tokens or lexical units according to their information entropy obtained from a causal language model such as LLaMa-7B. The challenge is that information entropy may be a suboptimal compression metric: (i) it only leverages unidirectional context and may fail to capture all essential information needed for prompt compression; (ii) it is not aligned with the prompt compression objective.To address these issues, we propose a data distillation procedure to derive knowledge from an LLM to compress prompts without losing crucial information, and meantime, introduce an extractive text compression dataset. We formulate prompt compression as a token classification problem to guarantee the faithfulness of the compressed prompt to the original one, and use a Transformer encoder as the base architecture to capture all essential information for prompt compression from the full bidirectional context. Our approach leads to lower latency by explicitly learning the compression objective with smaller models such as XLM-RoBERTa-large and mBERT.We evaluate our method on both in-domain and out-of-domain datasets, including MeetingBank, LongBench, ZeroScrolls, GSM8K, and BBH. Despite its small size, our model shows significant performance gains over strong baselines and demonstrates robust generalization ability across different LLMs. Additionally, our model is 3x-6x faster than existing prompt compression methods, while accelerating the end-to-end latency by 1.6x-2.9x with compression ratios of 2x-5x.

2023

pdf bib
Empower Large Language Model to Perform Better on Industrial Domain-Specific Question Answering
Fangkai Yang | Pu Zhao | Zezhong Wang | Lu Wang | Bo Qiao | Jue Zhang | Mohit Garg | Qingwei Lin | Saravan Rajmohan | Dongmei Zhang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: Industry Track

Large Language Model (LLM) has gained popularity and achieved remarkable results in open-domain tasks, but its performance in real industrial domain-specific scenarios is average due to its lack of specific domain knowledge. This issue has attracted widespread attention, but there are few relevant benchmarks available. In this paper, we provide a benchmark Question Answering (QA) dataset named MSQA, centered around Microsoft products and IT technical problems encountered by customers. This dataset contains industry cloud-specific QA knowledge, an area not extensively covered in general LLMs, making it well-suited for evaluating methods aiming to enhance LLMs’ domain-specific capabilities. In addition, we propose a new model interaction paradigm that can empower LLM to achieve better performance on domain-specific tasks where it is not proficient. Extensive experiments demonstrate that the approach following our method outperforms the commonly used LLM with retrieval methods. We make our source code and sample data available at: https://aka.ms/Microsoft_QA.