Juhyun Oh
2024
The Generative AI Paradox in Evaluation: “What It Can Solve, It May Not Evaluate”
Juhyun Oh
|
Eunsu Kim
|
Inha Cha
|
Alice Oh
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics: Student Research Workshop
This paper explores the assumption that Large Language Models (LLMs) skilled in generation tasks are equally adept as evaluators. We assess the performance of three LLMs and one open-source LM in Question-Answering (QA) and evaluation tasks using the TriviaQA (Joshi et al., 2017) dataset. Results indicate a significant disparity, with LLMs exhibiting lower performance in evaluation tasks compared to generation tasks. Intriguingly, we discover instances of unfaithful evaluation where models accurately evaluate answers in areas where they lack competence, underscoring the need to examine the faithfulness and trustworthiness of LLMs as evaluators. This study contributes to the understanding of “the Generative AI Paradox” (West et al., 2023), highlighting a need to explore the correlation between generative excellence and evaluation proficiency, and the necessity to scrutinize the faithfulness aspect in model evaluations.
2022
KOLD: Korean Offensive Language Dataset
Younghoon Jeong
|
Juhyun Oh
|
Jongwon Lee
|
Jaimeen Ahn
|
Jihyung Moon
|
Sungjoon Park
|
Alice Oh
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
Recent directions for offensive language detection are hierarchical modeling, identifying the type and the target of offensive language, and interpretability with offensive span annotation and prediction. These improvements are focused on English and do not transfer well to other languages because of cultural and linguistic differences. In this paper, we present the Korean Offensive Language Dataset (KOLD) comprising 40,429 comments, which are annotated hierarchically with the type and the target of offensive language, accompanied by annotations of the corresponding text spans. We collect the comments from NAVER news and YouTube platform and provide the titles of the articles and videos as the context information for the annotation process. We use these annotated comments as training data for Korean BERT and RoBERTa models and find that they are effective at offensiveness detection, target classification, and target span detection while having room for improvement for target group classification and offensive span detection. We discover that the target group distribution differs drastically from the existing English datasets, and observe that providing the context information improves the model performance in offensiveness detection (+0.3), target classification (+1.5), and target group classification (+13.1). We publicly release the dataset and baseline models.
Search
Co-authors
- Alice Oh 2
- Younghoon Jeong 1
- Jongwon Lee 1
- Jaimeen Ahn 1
- Jihyung Moon 1
- show all...