Julia El Zini


2022

pdf bib
Beyond Model Interpretability: On the Faithfulness and Adversarial Robustness of Contrastive Textual Explanations
Julia El Zini | Mariette Awad
Findings of the Association for Computational Linguistics: EMNLP 2022

Contrastive explanation methods go beyond transparency and address the contrastive aspect of explanations. Such explanations are emerging as an attractive option to provide actionable change to scenarios adversely impacted by classifiers’ decisions. However, their extension to textual data is under-explored and there is little investigation on their vulnerabilities and limitations. This work motivates textual counterfactuals by highlighting the social limitations of non-contrastive explainability. We also lay the ground for a novel evaluation scheme inspired by the faithfulness of explanations. Accordingly, we extend the computation of three metrics, proximity, connectedness and stability, to textual data and we benchmark two successful contrastive methods, POLYJUICE and MiCE, on our suggested metrics. Experiments on sentiment analysis data show that the connectedness of counterfactuals to their original counterparts is not obvious in both models. More interestingly, the generated contrastive texts are more attainable with POLYJUICE which highlights the significance of latent representations in counterfactual search. Finally, we perform the first semantic adversarial attack on textual recourse methods. The results demonstrate the robustness of POLYJUICE and the role that latent input representations play in robustness and reliability.

2016

pdf bib
TopoText: Interactive Digital Mapping of Literary Text
Randa El Khatib | Julia El Zini | David Wrisley | Mohamad Jaber | Shady Elbassuoni
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: System Demonstrations

We demonstrate TopoText, an interactive tool for digital mapping of literary text. TopoText takes as input a literary piece of text such as a novel or a biography article and automatically extracts all place names in the text. The identified places are then geoparsed and displayed on an interactive map. TopoText calculates the number of times a place was mentioned in the text, which is then reflected on the map allowing the end-user to grasp the importance of the different places within the text. It also displays the most frequent words mentioned within a specified proximity of a place name in context or across the entire text. This can also be faceted according to part of speech tags. Finally, TopoText keeps the human in the loop by allowing the end-user to disambiguate places and to provide specific place annotations. All extracted information such as geolocations, place frequencies, as well as all user-provided annotations can be automatically exported as a CSV file that can be imported later by the same user or other users.