Julia White


pdf bib
Open-domain clarification question generation without question examples
Julia White | Gabriel Poesia | Robert Hawkins | Dorsa Sadigh | Noah Goodman
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

An overarching goal of natural language processing is to enable machines to communicate seamlessly with humans. However, natural language can be ambiguous or unclear. In cases of uncertainty, humans engage in an interactive process known as repair: asking questions and seeking clarification until their uncertainty is resolved. We propose a framework for building a visually grounded question-asking model capable of producing polar (yes-no) clarification questions to resolve misunderstandings in dialogue. Our model uses an expected information gain objective to derive informative questions from an off-the-shelf image captioner without requiring any supervised question-answer data. We demonstrate our model’s ability to pose questions that improve communicative success in a goal-oriented 20 questions game with synthetic and human answerers.

pdf bib
Calibrate your listeners! Robust communication-based training for pragmatic speakers
Rose Wang | Julia White | Jesse Mu | Noah Goodman
Findings of the Association for Computational Linguistics: EMNLP 2021

To be good conversational partners, natural language processing (NLP) systems should be trained to produce contextually useful utterances. Prior work has investigated training NLP systems with communication-based objectives, where a neural listener stands in as a communication partner. However, these systems commonly suffer from semantic drift where the learned language diverges radically from natural language. We propose a method that uses a population of neural listeners to regularize speaker training. We first show that language drift originates from the poor uncertainty calibration of a neural listener, which makes high-certainty predictions on novel sentences. We explore ensemble- and dropout-based populations of listeners and find that the former results in better uncertainty quantification. We evaluate both population-based objectives on reference games, and show that the ensemble method with better calibration enables the speaker to generate pragmatic utterances while scaling to a large vocabulary and generalizing to new games and listeners.