Julia White


pdf bib
Leveraging Explicit Procedural Instructions for Data-Efficient Action Prediction
Julia White | Arushi Raghuvanshi | Yada Pruksachatkun
Findings of the Association for Computational Linguistics: ACL 2023

Task-oriented dialogues often require agents to enact complex, multi-step procedures in order to meet user requests. While large language models have found success automating these dialogues in constrained environments, their widespread deployment is limited by the substantial quantities of task-specific data required for training. The following paper presents a data-efficient solution to constructing dialogue systems, leveraging explicit instructions derived from agent guidelines, such as company policies or customer service manuals. Our proposed Knowledge-Augmented Dialogue System (KADS) combines a large language model with a knowledge retrieval module that pulls documents outlining relevant procedures from a predefined set of policies, given a user-agent interaction. To train this system, we introduce a semi-supervised pre-training scheme that employs dialogue-document matching and action-oriented masked language modeling with partial parameter freezing. We evaluate the effectiveness of our approach on prominent task-oriented dialogue datasets, Action-Based Conversations Dataset and Schema-Guided Dialogue, for two dialogue tasks: action state tracking and workflow discovery. Our results demonstrate that procedural knowledge augmentation improves accuracy predicting in- and out-of-distribution actions while preserving high performance in settings with low or sparse data.


pdf bib
Mixed-effects transformers for hierarchical adaptation
Julia White | Noah Goodman | Robert Hawkins
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Language differs dramatically from context to context. To some degree, large language models like GPT-3 account for such variation by conditioning on strings of initial input text, or prompts. However, prompting can be ineffective when contexts are sparse, out-of-sample, or extra-textual. In this paper, we introduce the mixed-effects transformer (MET), a novel approach for learning hierarchically-structured prefixes— lightweight modules prepended to an input sequence— to account for structured variation in language use. Specifically, we show how the popular class of mixed-effects regression models may be extended to transformer-based architectures using a regularized prefix-tuning procedure with dropout. We evaluate this approach on several domain-adaptation benchmarks, finding that it learns contextual variation from minimal data while generalizing well to unseen contexts.


pdf bib
Open-domain clarification question generation without question examples
Julia White | Gabriel Poesia | Robert Hawkins | Dorsa Sadigh | Noah Goodman
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

An overarching goal of natural language processing is to enable machines to communicate seamlessly with humans. However, natural language can be ambiguous or unclear. In cases of uncertainty, humans engage in an interactive process known as repair: asking questions and seeking clarification until their uncertainty is resolved. We propose a framework for building a visually grounded question-asking model capable of producing polar (yes-no) clarification questions to resolve misunderstandings in dialogue. Our model uses an expected information gain objective to derive informative questions from an off-the-shelf image captioner without requiring any supervised question-answer data. We demonstrate our model’s ability to pose questions that improve communicative success in a goal-oriented 20 questions game with synthetic and human answerers.

pdf bib
Calibrate your listeners! Robust communication-based training for pragmatic speakers
Rose Wang | Julia White | Jesse Mu | Noah Goodman
Findings of the Association for Computational Linguistics: EMNLP 2021

To be good conversational partners, natural language processing (NLP) systems should be trained to produce contextually useful utterances. Prior work has investigated training NLP systems with communication-based objectives, where a neural listener stands in as a communication partner. However, these systems commonly suffer from semantic drift where the learned language diverges radically from natural language. We propose a method that uses a population of neural listeners to regularize speaker training. We first show that language drift originates from the poor uncertainty calibration of a neural listener, which makes high-certainty predictions on novel sentences. We explore ensemble- and dropout-based populations of listeners and find that the former results in better uncertainty quantification. We evaluate both population-based objectives on reference games, and show that the ensemble method with better calibration enables the speaker to generate pragmatic utterances while scaling to a large vocabulary and generalizing to new games and listeners.