Julian Eisenschlos


pdf bib
MATE: Multi-view Attention for Table Transformer Efficiency
Julian Eisenschlos | Maharshi Gor | Thomas Müller | William Cohen
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

This work presents a sparse-attention Transformer architecture for modeling documents that contain large tables. Tables are ubiquitous on the web, and are rich in information. However, more than 20% of relational tables on the web have 20 or more rows (Cafarella et al., 2008), and these large tables present a challenge for current Transformer models, which are typically limited to 512 tokens. Here we propose MATE, a novel Transformer architecture designed to model the structure of web tables. MATE uses sparse attention in a way that allows heads to efficiently attend to either rows or columns in a table. This architecture scales linearly with respect to speed and memory, and can handle documents containing more than 8000 tokens with current accelerators. MATE also has a more appropriate inductive bias for tabular data, and sets a new state-of-the-art for three table reasoning datasets. For HybridQA (Chen et al., 2020), a dataset that involves large documents containing tables, we improve the best prior result by 19 points.

pdf bib
DoT: An efficient Double Transformer for NLP tasks with tables
Syrine Krichene | Thomas Müller | Julian Eisenschlos
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
TAPAS at SemEval-2021 Task 9: Reasoning over tables with intermediate pre-training
Thomas Müller | Julian Eisenschlos | Syrine Krichene
Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)

We present the TAPAS contribution to the Shared Task on Statement Verification and Evidence Finding with Tables (SemEval 2021 Task 9, Wang et al. (2021)). SEM TAB FACT Task A is a classification task of recognizing if a statement is entailed, neutral or refuted by the content of a given table. We adopt the binary TAPAS model of Eisenschlos et al. (2020) to this task. We learn two binary classification models: A first model to predict if a statement is neutral or non-neutral and a second one to predict if it is entailed or refuted. As the shared task training set contains only entailed or refuted examples, we generate artificial neutral examples to train the first model. Both models are pre-trained using a MASKLM objective, intermediate counter-factual and synthetic data (Eisenschlos et al., 2020) and TABFACT (Chen et al., 2020), a large table entailment dataset. We find that the artificial neutral examples are somewhat effective at training the first model, achieving 68.03 test F1 versus the 60.47 of a majority baseline. For the second stage, we find that the pre-training on the intermediate data and TABFACT improves the results over MASKLM pre-training (68.03 vs 57.01).

pdf bib
Fool Me Twice: Entailment from Wikipedia Gamification
Julian Eisenschlos | Bhuwan Dhingra | Jannis Bulian | Benjamin Börschinger | Jordan Boyd-Graber
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

We release FoolMeTwice (FM2 for short), a large dataset of challenging entailment pairs collected through a fun multi-player game. Gamification encourages adversarial examples, drastically lowering the number of examples that can be solved using “shortcuts” compared to other popular entailment datasets. Players are presented with two tasks. The first task asks the player to write a plausible claim based on the evidence from a Wikipedia page. The second one shows two plausible claims written by other players, one of which is false, and the goal is to identify it before the time runs out. Players “pay” to see clues retrieved from the evidence pool: the more evidence the player needs, the harder the claim. Game-play between motivated players leads to diverse strategies for crafting claims, such as temporal inference and diverting to unrelated evidence, and results in higher quality data for the entailment and evidence retrieval tasks. We open source the dataset and the game code.

pdf bib
Open Domain Question Answering over Tables via Dense Retrieval
Jonathan Herzig | Thomas Müller | Syrine Krichene | Julian Eisenschlos
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Recent advances in open-domain QA have led to strong models based on dense retrieval, but only focused on retrieving textual passages. In this work, we tackle open-domain QA over tables for the first time, and show that retrieval can be improved by a retriever designed to handle tabular context. We present an effective pre-training procedure for our retriever and improve retrieval quality with mined hard negatives. As relevant datasets are missing, we extract a subset of Natural Questions (Kwiatkowski et al., 2019) into a Table QA dataset. We find that our retriever improves retrieval results from 72.0 to 81.1 recall@10 and end-to-end QA results from 33.8 to 37.7 exact match, over a BERT based retriever.


pdf bib
TaPas: Weakly Supervised Table Parsing via Pre-training
Jonathan Herzig | Pawel Krzysztof Nowak | Thomas Müller | Francesco Piccinno | Julian Eisenschlos
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Answering natural language questions over tables is usually seen as a semantic parsing task. To alleviate the collection cost of full logical forms, one popular approach focuses on weak supervision consisting of denotations instead of logical forms. However, training semantic parsers from weak supervision poses difficulties, and in addition, the generated logical forms are only used as an intermediate step prior to retrieving the denotation. In this paper, we present TaPas, an approach to question answering over tables without generating logical forms. TaPas trains from weak supervision, and predicts the denotation by selecting table cells and optionally applying a corresponding aggregation operator to such selection. TaPas extends BERT’s architecture to encode tables as input, initializes from an effective joint pre-training of text segments and tables crawled from Wikipedia, and is trained end-to-end. We experiment with three different semantic parsing datasets, and find that TaPas outperforms or rivals semantic parsing models by improving state-of-the-art accuracy on SQA from 55.1 to 67.2 and performing on par with the state-of-the-art on WikiSQL and WikiTQ, but with a simpler model architecture. We additionally find that transfer learning, which is trivial in our setting, from WikiSQL to WikiTQ, yields 48.7 accuracy, 4.2 points above the state-of-the-art.

pdf bib
Understanding tables with intermediate pre-training
Julian Eisenschlos | Syrine Krichene | Thomas Müller
Findings of the Association for Computational Linguistics: EMNLP 2020

Table entailment, the binary classification task of finding if a sentence is supported or refuted by the content of a table, requires parsing language and table structure as well as numerical and discrete reasoning. While there is extensive work on textual entailment, table entailment is less well studied. We adapt TAPAS (Herzig et al., 2020), a table-based BERT model, to recognize entailment. Motivated by the benefits of data augmentation, we create a balanced dataset of millions of automatically created training examples which are learned in an intermediate step prior to fine-tuning. This new data is not only useful for table entailment, but also for SQA (Iyyer et al., 2017), a sequential table QA task. To be able to use long examples as input of BERT models, we evaluate table pruning techniques as a pre-processing step to drastically improve the training and prediction efficiency at a moderate drop in accuracy. The different methods set the new state-of-the-art on the TabFact (Chen et al., 2020) and SQA datasets.


pdf bib
MultiFiT: Efficient Multi-lingual Language Model Fine-tuning
Julian Eisenschlos | Sebastian Ruder | Piotr Czapla | Marcin Kadras | Sylvain Gugger | Jeremy Howard
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Pretrained language models are promising particularly for low-resource languages as they only require unlabelled data. However, training existing models requires huge amounts of compute, while pretrained cross-lingual models often underperform on low-resource languages. We propose Multi-lingual language model Fine-Tuning (MultiFiT) to enable practitioners to train and fine-tune language models efficiently in their own language. In addition, we propose a zero-shot method using an existing pretrained cross-lingual model. We evaluate our methods on two widely used cross-lingual classification datasets where they outperform models pretrained on orders of magnitude more data and compute. We release all models and code.