Julien Bezançon


2024

pdf bib
Your Stereotypical Mileage May Vary: Practical Challenges of Evaluating Biases in Multiple Languages and Cultural Contexts
Karen Fort | Laura Alonso Alemany | Luciana Benotti | Julien Bezançon | Claudia Borg | Marthese Borg | Yongjian Chen | Fanny Ducel | Yoann Dupont | Guido Ivetta | Zhijian Li | Margot Mieskes | Marco Naguib | Yuyan Qian | Matteo Radaelli | Wolfgang S. Schmeisser-Nieto | Emma Raimundo Schulz | Thiziri Saci | Sarah Saidi | Javier Torroba Marchante | Shilin Xie | Sergio E. Zanotto | Aurélie Névéol
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Warning: This paper contains explicit statements of offensive stereotypes which may be upsetting The study of bias, fairness and social impact in Natural Language Processing (NLP) lacks resources in languages other than English. Our objective is to support the evaluation of bias in language models in a multilingual setting. We use stereotypes across nine types of biases to build a corpus containing contrasting sentence pairs, one sentence that presents a stereotype concerning an underadvantaged group and another minimally changed sentence, concerning a matching advantaged group. We build on the French CrowS-Pairs corpus and guidelines to provide translations of the existing material into seven additional languages. In total, we produce 11,139 new sentence pairs that cover stereotypes dealing with nine types of biases in seven cultural contexts. We use the final resource for the evaluation of relevant monolingual and multilingual masked language models. We find that language models in all languages favor sentences that express stereotypes in most bias categories. The process of creating a resource that covers a wide range of language types and cultural settings highlights the difficulty of bias evaluation, in particular comparability across languages and contexts.

2023

pdf bib
Reconnaissance de défigements dans des tweets en français par des mesures de similarité sur des alignements textuels
Julien Bezançon | Gaël Lejeune
Actes de CORIA-TALN 2023. Actes de la 30e Conférence sur le Traitement Automatique des Langues Naturelles (TALN), volume 1 : travaux de recherche originaux -- articles longs

Cet article propose une première approche permettant la reconnaissance automatique de défigements linguistiques dans un corpus de tweets. Les recherches portant sur le domaine du figement ont gagné en popularité depuis quelques décennies. De nombreux travaux dérivés de cette notion sont également apparus, portant sur le phénomène corollaire du défigement. Alors que les linguistes essayent de décrypter les modes de construction de ces exemples de créativité lexicale, peu de travaux de recherche en TAL s’y sont intéressés. La problématique qu’offre le cas du défigement est pourtant intéressante~: des outils informatiques peuvent-ils être en mesure de reconnaître automatiquement un défigement ? Nous présentons ici une méthodologie basée sur des alignements de séquences réalisés sur diverses couches d’informations linguistiques. Cette méthodologie permet l’isolement de potentiels défigements au sein d’un corpus de tweets. Nous expérimentons ensuite une méthode de tri par similarité des défigements potentiels isolés.

pdf bib
SPQR@Deft2023: Similarité Sorbonne Pour les Systèmes de Question Réponse
Julien Bezançon | Toufik Boubehziz | Corina Chutaux | Oumaima Zine | Laurie Acensio | Ibtihel Ben Ltaifa | Nour El Houda Ben Chaabene | Caroline Koudoro-Parfait | Andrea Briglia | Gaël Lejeune
Actes de CORIA-TALN 2023. Actes du Défi Fouille de Textes@TALN2023

Nous présentons le travail de SPQR (Sorbonne Question-Réponses) au DÉfi Fouille de Textes 2023 sur la réponse automatique à des questionnaires à choix multiples dans le domaine de la pharmacologie. Nous proposons une approche fondée sur la constitution de corpus de spécialité et la recherche de phrases similaires entre ces corpus et les différentes réponses possibles à une question. Nous calculons une similarité cosinus sur des vecteurs en n-grammes de caractères pour déterminer les bonnes réponses. Cette approche a obtenu un score maximal en Hamming de 0,249 sur les données de test (0,305 sur le dev) et de 0,0997 en Exact Match Ratio (0,16 sur le dev).

2022

pdf bib
French CrowS-Pairs: Extension à une langue autre que l’anglais d’un corpus de mesure des biais sociétaux dans les modèles de langue masqués (French CrowS-Pairs : Extending a challenge dataset for measuring social bias in masked language models to a language other than English)
Aurélie Névéol | Yoann Dupont | Julien Bezançon | Karën Fort
Actes de la 29e Conférence sur le Traitement Automatique des Langues Naturelles. Volume 1 : conférence principale

Afin de permettre l’étude des biais en traitement automatique de la langue au delà de l’anglais américain, nous enrichissons le corpus américain CrowS-pairs de 1 677 paires de phrases en français représentant des stéréotypes portant sur dix catégories telles que le genre. 1 467 paires de phrases sont traduites à partir de CrowS-pairs et 210 sont nouvellement recueillies puis traduites en anglais. Selon le principe des paires minimales, les phrases du corpus contrastent un énoncé stéréotypé concernant un groupe défavorisé et son équivalent pour un groupe favorisé. Nous montrons que quatre modèles de langue favorisent les énoncés qui expriment des stéréotypes dans la plupart des catégories. Nous décrivons le processus de traduction et formulons des recommandations pour étendre le corpus à d’autres langues. Attention : Cet article contient des énoncés de stéréotypes qui peuvent être choquants.

pdf bib
Use of a Citizen Science Platform for the Creation of a Language Resource to Study Bias in Language Models for French: A Case Study
Karën Fort | Aurélie Névéol | Yoann Dupont | Julien Bezançon
Proceedings of the 2nd Workshop on Novel Incentives in Data Collection from People: models, implementations, challenges and results within LREC 2022

There is a growing interest in the evaluation of bias, fairness and social impact of Natural Language Processing models and tools. However, little resources are available for this task in languages other than English. Translation of resources originally developed for English is a promising research direction. However, there is also a need for complementing translated resources by newly sourced resources in the original languages and social contexts studied. In order to collect a language resource for the study of biases in Language Models for French, we decided to resort to citizen science. We created three tasks on the LanguageARC citizen science platform to assist with the translation of an existing resource from English into French as well as the collection of complementary resources in native French. We successfully collected data for all three tasks from a total of 102 volunteer participants. Participants from different parts of the world contributed and we noted that although calls sent to mailing lists had a positive impact on participation, some participants pointed barriers to contributions due to the collection platform.

pdf bib
French CrowS-Pairs: Extending a challenge dataset for measuring social bias in masked language models to a language other than English
Aurélie Névéol | Yoann Dupont | Julien Bezançon | Karën Fort
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Warning: This paper contains explicit statements of offensive stereotypes which may be upsetting. Much work on biases in natural language processing has addressed biases linked to the social and cultural experience of English speaking individuals in the United States. We seek to widen the scope of bias studies by creating material to measure social bias in language models (LMs) against specific demographic groups in France. We build on the US-centered CrowS-pairs dataset to create a multilingual stereotypes dataset that allows for comparability across languages while also characterizing biases that are specific to each country and language. We introduce 1,679 sentence pairs in French that cover stereotypes in ten types of bias like gender and age. 1,467 sentence pairs are translated from CrowS-pairs and 212 are newly crowdsourced. The sentence pairs contrast stereotypes concerning underadvantaged groups with the same sentence concerning advantaged groups. We find that four widely used language models (three French, one multilingual) favor sentences that express stereotypes in most bias categories. We report on the translation process from English into French, which led to a characterization of stereotypes in CrowS-pairs including the identification of US-centric cultural traits. We offer guidelines to further extend the dataset to other languages and cultural environments.