Julio Reyes Montesinos
2024
HAMiSoN-Ensemble at ClimateActivism 2024: Ensemble of RoBERTa, Llama 2, and Multi-task for Stance Detection
Raquel Rodriguez-Garcia
|
Julio Reyes Montesinos
|
Jesus M. Fraile-Hernandez
|
Anselmo Peñas
Proceedings of the 7th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE 2024)
CASE @ EACL 2024 proposes a shared task on Stance and Hate Event Detection for Climate Activism discourse. For our participation in the stance detection task, we propose an ensemble of different approaches: a transformer-based model (RoBERTa), a generative Large Language Model (Llama 2), and a Multi-Task Learning model. Our main goal is twofold: to study the effect of augmenting the training data with external datasets, and to examine the contribution of several, diverse models through a voting ensemble. The results show that if we take the best configuration during training for each of the three models (RoBERTa, Llama 2 and MTL), the ensemble would have ranked first with the highest F1 on the leaderboard for the stance detection subtask.
HAMiSoN-baselines at ClimateActivism 2024: A Study on the Use of External Data for Hate Speech and Stance Detection
Julio Reyes Montesinos
|
Alvaro Rodrigo
Proceedings of the 7th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE 2024)
The CASE@EACL2024 Shared Task addresses Climate Activism online through three subtasks that focus on hate speech detection (Subtask A), hate speech target classification (Subtask B), and stance detection (Subtask C) respectively.Our contribution examines the effect of fine-tuning on external data for each of these subtasks. For the two subtasks that focus on hate speech, we augment the training data with the OLID dataset, whereas for the stance subtask we harness the SemEval-2016 Stance dataset. We fine-tune RoBERTa and DeBERTa models for each of the subtasks, with and without external training data.For the hate speech detection and stance detection subtasks, our RoBERTa models came up third and first on the leaderboard, respectively. While the use of external data was not relevant on those tasks, we found that it greatly improved the performance on the hate speech target categorization.