Jumayel Islam


pdf bib
A Lexicon-Based Approach for Detecting Hedges in Informal Text
Jumayel Islam | Lu Xiao | Robert E. Mercer
Proceedings of the 12th Language Resources and Evaluation Conference

Hedging is a commonly used strategy in conversational management to show the speaker’s lack of commitment to what they communicate, which may signal problems between the speakers. Our project is interested in examining the presence of hedging words and phrases in identifying the tension between an interviewer and interviewee during a survivor interview. While there have been studies on hedging detection in the natural language processing literature, all existing work has focused on structured texts and formal communications. Our project thus investigated a corpus of eight unstructured conversational interviews about the Rwanda Genocide and identified hedging patterns in the interviewees’ responses. Our work produced three manually constructed lists of hedge words, booster words, and hedging phrases. Leveraging these lexicons, we developed a rule-based algorithm that detects sentence-level hedges in informal conversations such as survivor interviews. Our work also produced a dataset of 3000 sentences having the categories Hedge and Non-hedge annotated by three researchers. With experiments on this annotated dataset, we verify the efficacy of our proposed algorithm. Our work contributes to the further development of tools that identify hedges from informal conversations and discussions.


pdf bib
Multi-Channel Convolutional Neural Network for Twitter Emotion and Sentiment Recognition
Jumayel Islam | Robert E. Mercer | Lu Xiao
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

The advent of micro-blogging sites has paved the way for researchers to collect and analyze huge volumes of data in recent years. Twitter, being one of the leading social networking sites worldwide, provides a great opportunity to its users for expressing their states of mind via short messages which are called tweets. The urgency of identifying emotions and sentiments conveyed through tweets has led to several research works. It provides a great way to understand human psychology and impose a challenge to researchers to analyze their content easily. In this paper, we propose a novel use of a multi-channel convolutional neural architecture which can effectively use different emotion and sentiment indicators such as hashtags, emoticons and emojis that are present in the tweets and improve the performance of emotion and sentiment identification. We also investigate the incorporation of different lexical features in the neural network model and its effect on the emotion and sentiment identification task. We analyze our model on some standard datasets and compare its effectiveness with existing techniques.