Jun Huang


pdf bib
Towards Adaptive Prefix Tuning for Parameter-Efficient Language Model Fine-tuning
Zhen-Ru Zhang | Chuanqi Tan | Haiyang Xu | Chengyu Wang | Jun Huang | Songfang Huang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Fine-tuning large pre-trained language models on various downstream tasks with whole parameters is prohibitively expensive. Hence, Parameter-efficient fine-tuning has attracted attention that only optimizes a few task-specific parameters with the frozen pre-trained model. In this work, we focus on prefix tuning, which only optimizes continuous prefix vectors (i.e. pseudo tokens) inserted into Transformer layers. Based on the observation that the learned syntax and semantics representation varies a lot at different layers, we argue that the adaptive prefix will be further tailored to each layer than the fixed one, enabling the fine-tuning more effective and efficient. Thus, we propose Adaptive Prefix Tuning (APT) to adjust the prefix in terms of both fine-grained token level and coarse-grained layer level with a gate mechanism. Experiments on the SuperGLUE and NER datasets show the effectiveness of APT. In addition, taking the gate as a probing, we validate the efficiency and effectiveness of the variable prefix.

pdf bib
CocaCLIP: Exploring Distillation of Fully-Connected Knowledge Interaction Graph for Lightweight Text-Image Retrieval
Jiapeng Wang | Chengyu Wang | Xiaodan Wang | Jun Huang | Lianwen Jin
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 5: Industry Track)

Large-scale pre-trained text-image models with dual-encoder architectures (such as CLIP) are typically adopted for various vision-language applications, including text-image retrieval. However, these models are still less practical on edge devices or for real-time situations, due to the substantial indexing and inference time and the large consumption of computational resources. Although knowledge distillation techniques have been widely utilized for uni-modal model compression, how to expand them to the situation when the numbers of modalities and teachers/students are doubled has been rarely studied. In this paper, we conduct comprehensive experiments on this topic and propose the fully-Connected knowledge interaction graph (Coca) technique for cross-modal pre-training distillation. Based on our findings, the resulting CocaCLIP achieves SOTA performances on the widely-used Flickr30K and MSCOCO benchmarks under the lightweight setting. An industry application of our method on an e-commercial platform further demonstrates the significant effectiveness of CocaCLIP.

pdf bib
FashionKLIP: Enhancing E-Commerce Image-Text Retrieval with Fashion Multi-Modal Conceptual Knowledge Graph
Xiaodan Wang | Chengyu Wang | Lei Li | Zhixu Li | Ben Chen | Linbo Jin | Jun Huang | Yanghua Xiao | Ming Gao
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 5: Industry Track)

Image-text retrieval is a core task in the multi-modal domain, which arises a lot of attention from both research and industry communities. Recently, the booming of visual-language pre-trained (VLP) models has greatly enhanced the performance of cross-modal retrieval. However, the fine-grained interactions between objects from different modalities are far from well-established. This issue becomes more severe in the e-commerce domain, which lacks sufficient training data and fine-grained cross-modal knowledge. To alleviate the problem, this paper proposes a novel e-commerce knowledge-enhanced VLP model FashionKLIP. We first automatically establish a multi-modal conceptual knowledge graph from large-scale e-commerce image-text data, and then inject the prior knowledge into the VLP model to align across modalities at the conceptual level. The experiments conducted on a public benchmark dataset demonstrate that FashionKLIP effectively enhances the performance of e-commerce image-text retrieval upon state-of-the-art VLP models by a large margin. The application of the method in real industrial scenarios also proves the feasibility and efficiency of FashionKLIP.

pdf bib
Rapid Diffusion: Building Domain-Specific Text-to-Image Synthesizers with Fast Inference Speed
Bingyan Liu | Weifeng Lin | Zhongjie Duan | Chengyu Wang | Wu Ziheng | Zhang Zipeng | Kui Jia | Lianwen Jin | Cen Chen | Jun Huang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 5: Industry Track)

Text-to-Image Synthesis (TIS) aims to generate images based on textual inputs. Recently, several large pre-trained diffusion models have been released to create high-quality images with pre-trained text encoders and diffusion-based image synthesizers. However, popular diffusion-based models from the open-source community cannot support industrial domain-specific applications due to the lack of entity knowledge and low inference speed. In this paper, we propose Rapid Diffusion, a novel framework for training and deploying super-resolution, text-to-image latent diffusion models with rich entity knowledge injected and optimized networks. Furthermore, we employ BladeDISC, an end-to-end Artificial Intelligence (AI) compiler, and FlashAttention techniques to optimize computational graphs of the generated models for online deployment. Experiments verify the effectiveness of our approach in terms of image quality and inference speed. In addition, we present industrial use cases and integrate Rapid Diffusion to an AI platform to show its practical values.


pdf bib
ARTIST: A Transformer-based Chinese Text-to-Image Synthesizer Digesting Linguistic and World Knowledge
Tingting Liu | Chengyu Wang | Xiangru Zhu | Lei Li | Minghui Qiu | Jun Huang | Ming Gao | Yanghua Xiao
Findings of the Association for Computational Linguistics: EMNLP 2022

Text-to-Image Synthesis (TIS) is a popular task to convert natural language texts into realistic images. Recently, transformer-based TIS models (such as DALL-E) have been proposed using the encoder-decoder architectures. Yet, these billion-scale TIS models are difficult to tune and deploy in resource-constrained environments. In addition, there is a lack of language-specific TIS benchmarks for Chinese, together with high-performing models with moderate sizes. In this work, we present ARTIST, A tRansformer-based Chinese Text-to-Image SynThesizer for high-resolution image generation. In ARTIST, the rich linguistic and relational knowledge facts are injected into the model to ensure better model performance without the usage of ultra-large models. We further establish a large-scale Chinese TIS benchmark with the re-production results of state-of-the-art transformer-based TIS models. Results show ARTIST outperforms previous approaches.

pdf bib
KECP: Knowledge Enhanced Contrastive Prompting for Few-shot Extractive Question Answering
Jianing Wang | Chengyu Wang | Minghui Qiu | Qiuhui Shi | Hongbin Wang | Jun Huang | Ming Gao
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Extractive Question Answering (EQA) is one of the most essential tasks in Machine Reading Comprehension (MRC), which can be solved by fine-tuning the span selecting heads of Pre-trained Language Models (PLMs). However, most existing approaches for MRC may perform poorly in the few-shot learning scenario. To solve this issue, we propose a novel framework named Knowledge Enhanced Contrastive Prompt-tuning (KECP). Instead of adding pointer heads to PLMs, we introduce a seminal paradigm for EQA that transforms the task into a non-autoregressive Masked Language Modeling (MLM) generation problem. Simultaneously, rich semantics from the external knowledge base (KB) and the passage context support enhancing the query’s representations. In addition, to boost the performance of PLMs, we jointly train the model by the MLM and contrastive learning objectives. Experiments on multiple benchmarks demonstrate that our method consistently outperforms state-of-the-art approaches in few-shot settings by a large margin.

pdf bib
SpanProto: A Two-stage Span-based Prototypical Network for Few-shot Named Entity Recognition
Jianing Wang | Chengyu Wang | Chuanqi Tan | Minghui Qiu | Songfang Huang | Jun Huang | Ming Gao
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Few-shot Named Entity Recognition (NER) aims to identify named entities with very little annotated data. Previous methods solve this problem based on token-wise classification, which ignores the information of entity boundaries, and inevitably the performance is affected by the massive non-entity tokens. To this end, we propose a seminal span-based prototypical network (SpanProto) that tackles few-shot NER via a two-stage approach, including span extraction and mention classification. In the span extraction stage, we transform the sequential tags into a global boundary matrix, enabling the model to focus on the explicit boundary information. For mention classification, we leverage prototypical learning to capture the semantic representations for each labeled span and make the model better adapt to novel-class entities. To further improve the model performance, we split out the false positives generated by the span extractor but not labeled in the current episode set, and then present a margin-based loss to separate them from each prototype region. Experiments over multiple benchmarks demonstrate that our model outperforms strong baselines by a large margin.

pdf bib
EasyNLP: A Comprehensive and Easy-to-use Toolkit for Natural Language Processing
Chengyu Wang | Minghui Qiu | Taolin Zhang | Tingting Liu | Lei Li | Jianing Wang | Ming Wang | Jun Huang | Wei Lin
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

Pre-Trained Models (PTMs) have reshaped the development of Natural Language Processing (NLP) and achieved significant improvement in various benchmarks. Yet, it is not easy for industrial practitioners to obtain high-performing PTM-based models without a large amount of labeled training data and deploy them online with fast inference speed. To bridge this gap, EasyNLP is designed to make it easy to build NLP applications, which supports a comprehensive suite of NLP algorithms. It further features knowledge-enhanced pre-training, knowledge distillation and few-shot learning functionalities, and provides a unified framework of model training, inference and deployment for real-world applications. EasyNLP has powered over ten business units within Alibaba Group and is seamlessly integrated to the Platform of AI (PAI) products on Alibaba Cloud. The source code of EasyNLP is released at GitHub (https://github.com/alibaba/EasyNLP).

pdf bib
Revisiting and Advancing Chinese Natural Language Understanding with Accelerated Heterogeneous Knowledge Pre-training
Taolin Zhang | Junwei Dong | Jianing Wang | Chengyu Wang | Ang Wang | Yinghui Liu | Jun Huang | Yong Li | Xiaofeng He
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: Industry Track

Recently, knowledge-enhanced pre-trained language models (KEPLMs) improve context-aware representations via learning from structured relations in knowledge bases, and/or linguistic knowledge from syntactic or dependency analysis. Unlike English, there is a lack of high-performing open-source Chinese KEPLMs in the natural language processing (NLP) community to support various language understanding applications. In this paper, we revisit and advance the development of Chinese natural language understanding with a series of novel Chinese KEPLMs released in various parameter sizes, namely CKBERT (Chinese knowledge-enhanced BERT). Specifically, both relational and linguistic knowledge is effectively injected into CKBERT based on two novel pre-training tasks, i.e., linguistic-aware masked language modeling and contrastive multi-hop relation modeling. Based on the above two pre-training paradigms and our in-house implemented TorchAccelerator, we have pre-trained base (110M), large (345M) and huge (1.3B) versions of CKBERT efficiently on GPU clusters. Experiments demonstrate that CKBERT consistently outperforms strong baselines for Chinese over various benchmark NLP tasks and in terms of different model sizes.


pdf bib
Knowledge-Empowered Representation Learning for Chinese Medical Reading Comprehension: Task, Model and Resources
Taolin Zhang | Chengyu Wang | Minghui Qiu | Bite Yang | Zerui Cai | Xiaofeng He | Jun Huang
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
Meta-KD: A Meta Knowledge Distillation Framework for Language Model Compression across Domains
Haojie Pan | Chengyu Wang | Minghui Qiu | Yichang Zhang | Yaliang Li | Jun Huang
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Pre-trained language models have been applied to various NLP tasks with considerable performance gains. However, the large model sizes, together with the long inference time, limit the deployment of such models in real-time applications. One line of model compression approaches considers knowledge distillation to distill large teacher models into small student models. Most of these studies focus on single-domain only, which ignores the transferable knowledge from other domains. We notice that training a teacher with transferable knowledge digested across domains can achieve better generalization capability to help knowledge distillation. Hence we propose a Meta-Knowledge Distillation (Meta-KD) framework to build a meta-teacher model that captures transferable knowledge across domains and passes such knowledge to students. Specifically, we explicitly force the meta-teacher to capture transferable knowledge at both instance-level and feature-level from multiple domains, and then propose a meta-distillation algorithm to learn single-domain student models with guidance from the meta-teacher. Experiments on public multi-domain NLP tasks show the effectiveness and superiority of the proposed Meta-KD framework. Further, we also demonstrate the capability of Meta-KD in the settings where the training data is scarce.

pdf bib
TransPrompt: Towards an Automatic Transferable Prompting Framework for Few-shot Text Classification
Chengyu Wang | Jianing Wang | Minghui Qiu | Jun Huang | Ming Gao
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Recent studies have shown that prompts improve the performance of large pre-trained language models for few-shot text classification. Yet, it is unclear how the prompting knowledge can be transferred across similar NLP tasks for the purpose of mutual reinforcement. Based on continuous prompt embeddings, we propose TransPrompt, a transferable prompting framework for few-shot learning across similar tasks. In TransPrompt, we employ a multi-task meta-knowledge acquisition procedure to train a meta-learner that captures cross-task transferable knowledge. Two de-biasing techniques are further designed to make it more task-agnostic and unbiased towards any tasks. After that, the meta-learner can be adapted to target tasks with high accuracy. Extensive experiments show that TransPrompt outperforms single-task and cross-task strong baselines over multiple NLP tasks and datasets. We further show that the meta-learner can effectively improve the performance on previously unseen tasks; and TransPrompt also outperforms strong fine-tuning baselines when learning with full training sets.

pdf bib
Meta Distant Transfer Learning for Pre-trained Language Models
Chengyu Wang | Haojie Pan | Minghui Qiu | Jun Huang | Fei Yang | Yin Zhang
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

With the wide availability of Pre-trained Language Models (PLMs), multi-task fine-tuning across domains has been extensively applied. For tasks related to distant domains with different class label sets, PLMs may memorize non-transferable knowledge for the target domain and suffer from negative transfer. Inspired by meta-learning, we propose the Meta Distant Transfer Learning (Meta-DTL) framework to learn the cross-task knowledge for PLM-based methods. Meta-DTL first employs task representation learning to mine implicit relations among multiple tasks and classes. Based on the results, it trains a PLM-based meta-learner to capture the transferable knowledge across tasks. The weighted maximum entropy regularizers are proposed to make meta-learner more task-agnostic and unbiased. Finally, the meta-learner can be fine-tuned to fit each task with better parameter initialization. We evaluate Meta-DTL using both BERT and ALBERT on seven public datasets. Experiment results confirm the superiority of Meta-DTL as it consistently outperforms strong baselines. We find that Meta-DTL is highly effective when very few data is available for the target task.


pdf bib
Meta Fine-Tuning Neural Language Models for Multi-Domain Text Mining
Chengyu Wang | Minghui Qiu | Jun Huang | Xiaofeng He
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Pre-trained neural language models bring significant improvement for various NLP tasks, by fine-tuning the models on task-specific training sets. During fine-tuning, the parameters are initialized from pre-trained models directly, which ignores how the learning process of similar NLP tasks in different domains is correlated and mutually reinforced. In this paper, we propose an effective learning procedure named Meta Fine-Tuning (MFT), serving as a meta-learner to solve a group of similar NLP tasks for neural language models. Instead of simply multi-task training over all the datasets, MFT only learns from typical instances of various domains to acquire highly transferable knowledge. It further encourages the language model to encode domain-invariant representations by optimizing a series of novel domain corruption loss functions. After MFT, the model can be fine-tuned for each domain with better parameter initializations and higher generalization ability. We implement MFT upon BERT to solve several multi-domain text mining tasks. Experimental results confirm the effectiveness of MFT and its usefulness for few-shot learning.


pdf bib
Transfer Learning for Context-Aware Question Matching in Information-seeking Conversations in E-commerce
Minghui Qiu | Liu Yang | Feng Ji | Wei Zhou | Jun Huang | Haiqing Chen | Bruce Croft | Wei Lin
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Building multi-turn information-seeking conversation systems is an important and challenging research topic. Although several advanced neural text matching models have been proposed for this task, they are generally not efficient for industrial applications. Furthermore, they rely on a large amount of labeled data, which may not be available in real-world applications. To alleviate these problems, we study transfer learning for multi-turn information seeking conversations in this paper. We first propose an efficient and effective multi-turn conversation model based on convolutional neural networks. After that, we extend our model to adapt the knowledge learned from a resource-rich domain to enhance the performance. Finally, we deployed our model in an industrial chatbot called AliMe Assist and observed a significant improvement over the existing online model.


pdf bib
AliMe Chat: A Sequence to Sequence and Rerank based Chatbot Engine
Minghui Qiu | Feng-Lin Li | Siyu Wang | Xing Gao | Yan Chen | Weipeng Zhao | Haiqing Chen | Jun Huang | Wei Chu
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

We propose AliMe Chat, an open-domain chatbot engine that integrates the joint results of Information Retrieval (IR) and Sequence to Sequence (Seq2Seq) based generation models. AliMe Chat uses an attentive Seq2Seq based rerank model to optimize the joint results. Extensive experiments show our engine outperforms both IR and generation based models. We launch AliMe Chat for a real-world industrial application and observe better results than another public chatbot.


pdf bib
Sehda S2MT: Incorporation of Syntax into Statistical Translation System
Yookyung Kim | Jun Huang | Youssef Billawala | Demitrios Master | Farzad Ehsani
Proceedings of the Second International Workshop on Spoken Language Translation