Jun Seok Kang


2019

pdf bib
PoMo: Generating Entity-Specific Post-Modifiers in Context
Jun Seok Kang | Robert Logan | Zewei Chu | Yang Chen | Dheeru Dua | Kevin Gimpel | Sameer Singh | Niranjan Balasubramanian
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

We introduce entity post-modifier generation as an instance of a collaborative writing task. Given a sentence about a target entity, the task is to automatically generate a post-modifier phrase that provides contextually relevant information about the entity. For example, for the sentence, “Barack Obama, _______, supported the #MeToo movement.”, the phrase “a father of two girls” is a contextually relevant post-modifier. To this end, we build PoMo, a post-modifier dataset created automatically from news articles reflecting a journalistic need for incorporating entity information that is relevant to a particular news event. PoMo consists of more than 231K sentences with post-modifiers and associated facts extracted from Wikidata for around 57K unique entities. We use crowdsourcing to show that modeling contextual relevance is necessary for accurate post-modifier generation. We adapt a number of existing generation approaches as baselines for this dataset. Our results show there is large room for improvement in terms of both identifying relevant facts to include (knowing which claims are relevant gives a >20% improvement in BLEU score), and generating appropriate post-modifier text for the context (providing relevant claims is not sufficient for accurate generation). We conduct an error analysis that suggests promising directions for future research.

2014

pdf bib
Keystroke Patterns as Prosody in Digital Writings: A Case Study with Deceptive Reviews and Essays
Ritwik Banerjee | Song Feng | Jun Seok Kang | Yejin Choi
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)

pdf bib
ConnotationWordNet: Learning Connotation over the Word+Sense Network
Jun Seok Kang | Song Feng | Leman Akoglu | Yejin Choi
Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

2013

pdf bib
Where Not to Eat? Improving Public Policy by Predicting Hygiene Inspections Using Online Reviews
Jun Seok Kang | Polina Kuznetsova | Michael Luca | Yejin Choi
Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing

pdf bib
Connotation Lexicon: A Dash of Sentiment Beneath the Surface Meaning
Song Feng | Jun Seok Kang | Polina Kuznetsova | Yejin Choi
Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)