Multiple-choice visual question answering (VQA) is to automatically choose a correct answer from a set of choices after reading an image. Existing efforts have been devoted to a separate generation of an image-related question, a correct answer, or challenge distractors. By contrast, we turn to a holistic generation and optimization of questions, answers, and distractors (QADs) in this study. This integrated generation strategy eliminates the need for human curation and guarantees information consistency. Furthermore, we first propose to put the spotlight on different image regions to diversify QADs. Accordingly, a novel framework ReBo is formulated in this paper. ReBo cyclically generates each QAD based on a recurrent multimodal encoder, and each generation is focusing on a different area of the image compared to those already concerned by the previously generated QADs. In addition to traditional VQA comparisons with state-of-the-art approaches, we also validate the capability of ReBo in generating augmented data to benefit VQA models.
Modern NLP models are often trained on public datasets drawn from diverse sources, rendering them vulnerable to data poisoning attacks. These attacks can manipulate the model’s behavior in ways engineered by the attacker. One such tactic involves the implantation of backdoors, achieved by poisoning specific training instances with a textual trigger and a target class label. Several strategies have been proposed to mitigate the risks associated with backdoor attacks by identifying and removing suspected poisoned examples. However, we observe that these strategies fail to offer effective protection against several advanced backdoor attacks. To remedy this deficiency, we propose a novel defensive mechanism that first exploits training dynamics to identify poisoned samples with high precision, followed by a label propagation step to improve recall and thus remove the majority of poisoned instances. Compared with recent advanced defense methods, our method considerably reduces the success rates of several backdoor attacks while maintaining high classification accuracy on clean test sets.
Multimodal Emotion Recognition in Conversations (ERC) aims to identify emotions in conversational videos. Current efforts focus on modeling both context-sensitive and speaker-sensitive dependencies and multimodal fusion. Despite the progress, models in Multimodal ERC (MERC) still struggle due to a lack of CommonSense Knowledge (CSK). In contrast, models in textual ERC typically employ CSK to enhance emotion inference. However, in multimodal scenarios, relying solely on textual CSK while neglecting visual CSK may hinder the understanding of visual emotional cues. To address this, we introduce a novel approach called Multiple Knowledge Enhanced Interactive Graph Network (MKE-IGN) to integrate multiple knowledge, such as textual and visual CSK, into the edge representations, thereby facilitating the modeling of relations between utterances and different types of CSK. Furthermore, considering that irrelevant CSK might be retained as noise, MKE-IGN adaptively selects this CSK guided by the mood-congruent effect and refines it based on contexts. Experimental results show that MKE-IGN outperforms state-of-the-art methods on two popular datasets.
While multilingual machine translation (MNMT) systems hold substantial promise, they also have security vulnerabilities. Our research highlights that MNMT systems can be susceptible to a particularly devious style of backdoor attack, whereby an attacker injects poisoned data into a low-resource language pair to cause malicious translations in other languages, including high-resource languages.Our experimental results reveal that injecting less than 0.01% poisoned data into a low-resource language pair can achieve an average 20% attack success rate in attacking high-resource language pairs. This type of attack is of particular concern, given the larger attack surface of languages inherent to low-resource settings. Our aim is to bring attention to these vulnerabilities within MNMT systems with the hope of encouraging the community to address security concerns in machine translation, especially in the context of low-resource languages.
This paper describes the system developed by the HITSZ-HLT team for WASSA-2024 Shared Task 2, which addresses two closely linked sub-tasks: Cross-lingual Emotion Detection and Binary Trigger Word Detection in tweets. The main goal of Shared Task 2 is to simultaneously identify the emotions expressed and detect the trigger words across multiple languages. To achieve this, we introduce a Language-agnostic Multi Task Learning (LaMTL) framework that integrates emotion prediction and emotion trigger word detection tasks. By fostering synergistic interactions between task-specific and task-agnostic representations, the LaMTL aims to mutually enhance emotional cues, ultimately improving the performance of both tasks. Additionally, we leverage large-scale language models to translate the training dataset into multiple languages, thereby fostering the formation of language-agnostic representations within the model, significantly enhancing the model’s ability to transfer and perform well across multilingual data. Experimental results demonstrate the effectiveness of our framework across both tasks, with a particular highlight on its success in achieving second place in sub-task 2.
Recent advancements in large language models (LLMs) have indeed showcased their impressive capabilities. On mobile devices, the wealth of valuable, non-public data generated daily holds great promise for locally fine-tuning personalized LLMs, while maintaining privacy through on-device processing. However, the constraints of mobile device resources pose challenges to direct on-device LLM fine-tuning, mainly due to the memory-intensive nature of derivative-based optimization required for saving gradients and optimizer states. To tackle this, we propose employing derivative-free optimization techniques to enable on-device fine-tuning of LLM, even on memory-limited mobile devices. Empirical results demonstrate that the RoBERTa-large model and OPT-1.3B can be fine-tuned locally on the OPPO Reno 6 smartphone using around 4GB and 6.5GB of memory respectively, using derivative-free optimization techniques. This highlights the feasibility of on-device LLM fine-tuning on mobile devices, paving the way for personalized LLMs on resource-constrained devices while safeguarding data privacy.
The reflection capacity of Large Language Model (LLM) has garnered extensive attention. A post-hoc prompting strategy, e.g., reflexion and self-refine, refines LLM’s response based on self-evaluated or external feedback. However, recent research indicates without external feedback, LLM’s intrinsic reflection is unstable. Our investigation unveils that the key bottleneck is the quality of the self-evaluated feedback. We find LLMs often exhibit overconfidence or high randomness when self-evaluate, offering stubborn or inconsistent feedback, which causes poor reflection. To remedy this, we advocate Self-Contrast: It adaptively explores diverse solving perspectives tailored to the request, contrasts the differences, and summarizes these discrepancies into a checklist which could be used to re-examine and eliminate discrepancies. Our method endows LLM with diverse perspectives to alleviate stubborn biases. Moreover, their discrepancies indicate potential errors or inherent uncertainties that LLM often overlooks. Reflecting upon these can catalyze more accurate and stable reflection. Experiments conducted on a series of reasoning and translation tasks with different LLMs serve to underscore the effectiveness and generality of our strategy.
The key challenge in semantic search is to create models that are both accurate and efficient in pinpointing relevant sentences for queries. While BERT-style bi-encoders excel in efficiency with pre-computed embeddings, they often miss subtle nuances in search tasks. Conversely, GPT-style LLMs with cross-encoder designs capture these nuances but are computationally intensive, hindering real-time applications. In this paper, we present D2LLMs—Decomposed and Distilled LLMs for semantic search—that combines the best of both worlds. We decompose a cross-encoder into an efficient bi-encoder integrated with Pooling by Multihead Attention and an Interaction Emulation Module, achieving nuanced understanding and pre-computability. Knowledge from the LLM is distilled into this model using contrastive, rank, and feature imitation techniques. Our experiments show that D2LLM surpasses five leading baselines in terms of all metrics across three tasks, particularly improving NLI task performance by at least 6.45%
Multiple-choice visual question answering (MC VQA) requires an answer picked from a list of distractors, based on a question and an image. This research has attracted wide interest from the fields of visual question answering, visual question generation, and visual distractor generation. However, these fields still stay in their own territories, and how to jointly generate meaningful questions, correct answers, and challenging distractors remains unexplored. In this paper, we introduce a novel task, Visual Question-Answer-Distractors Generation (VQADG), which can bridge this research gap as well as take as a cornerstone to promote existing VQA models. Specific to the VQADG task, we present a novel framework consisting of a vision-and-language model to encode the given image and generate QADs jointly, and contrastive learning to ensure the consistency of the generated question, answer, and distractors. Empirical evaluations on the benchmark dataset validate the performance of our model in the VQADG task.
Natural Language Processing (NLP) plays a pivotal role in the realm of Digital Humanities (DH) and serves as the cornerstone for advancing the structural analysis of historical and cultural heritage texts. This is particularly true for the domains of named entity recognition (NER) and relation extraction (RE). In our commitment to expediting ancient history and culture, we present the “Chinese Historical Information Extraction Corpus”(CHisIEC). CHisIEC is a meticulously curated dataset designed to develop and evaluate NER and RE tasks, offering a resource to facilitate research in the field. Spanning a remarkable historical timeline encompassing data from 13 dynasties spanning over 1830 years, CHisIEC epitomizes the extensive temporal range and text heterogeneity inherent in Chinese historical documents. The dataset encompasses four distinct entity types and twelve relation types, resulting in a meticulously labeled dataset comprising 14,194 entities and 8,609 relations. To establish the robustness and versatility of our dataset, we have undertaken comprehensive experimentation involving models of various sizes and paradigms. Additionally, we have evaluated the capabilities of Large Language Models (LLMs) in the context of tasks related to ancient Chinese history. The dataset and code are available at https://github.com/tangxuemei1995/CHisIEC.
Cultural heritage serves as the enduring record of human thought and history. Despite significant efforts dedicated to the preservation of cultural relics, many ancient artefacts have been ravaged irreversibly by natural deterioration and human actions. Deep learning technology has emerged as a valuable tool for restoring various kinds of cultural heritages, including ancient text restoration. Previous research has approached ancient text restoration from either visual or textual perspectives, often overlooking the potential of synergizing multimodal information. This paper proposes a novel Multimodal Multitask Restoring Model (MMRM) to restore ancient texts, particularly emphasising the ideograph. This model combines context understanding with residual visual information from damaged ancient artefacts, enabling it to predict damaged characters and generate restored images simultaneously. We tested the MMRM model through experiments conducted on both simulated datasets and authentic ancient inscriptions. The results show that the proposed method gives insightful restoration suggestions in both simulation experiments and real-world scenarios. To the best of our knowledge, this work represents the pioneering application of multimodal deep learning in ancient text restoration, which will contribute to the understanding of ancient society and culture in digital humanities fields.
Rationalization is to employ a generator and a predictor to construct a self-explaining NLP model in which the generator selects a subset of human-intelligible pieces of the input text to the following predictor. However, rationalization suffers from two key challenges, i.e., spurious correlation and degeneration, where the predictor overfits the spurious or meaningless pieces solely selected by the not-yet well-trained generator and in turn deteriorates the generator. Although many studies have been proposed to address the two challenges, they are usually designed separately and do not take both of them into account. In this paper, we propose a simple yet effective method named MGR to simultaneously solve the two problems. The key idea of MGR is to employ multiple generators such that the occurrence stability of real pieces is improved and more meaningful pieces are delivered to the predictor. Empirically, we show that MGR improves the F1 score by up to 20.9% as compared to state-of-the-art methods.
Cross-Lingual Semantic Parsing (CLSP) aims to translate queries in multiple natural languages (NLs) into meaning representations (MRs) such as SQL, lambda calculus, and logic forms. However, existing CLSP models are separately proposed and evaluated on datasets of limited tasks and applications, impeding a comprehensive and unified evaluation of CLSP on a diverse range of NLs and MRs. To this end, we present XSemPLR, a unified benchmark for cross-lingual semantic parsing featured with 22 natural languages and 8 meaning representations by examining and selecting 9 existing datasets to cover 5 tasks and 164 domains. We use XSemPLR to conduct a comprehensive benchmark study on a wide range of multilingual language models including encoder-based models (mBERT, XLM-R), encoder-decoder models (mBART, mT5), and decoder-based models (Codex, BLOOM). We design 6 experiment settings covering various lingual combinations (monolingual, multilingual, cross-lingual) and numbers of learning samples (full dataset, few-shot, and zero-shot). Our experiments show that encoder-decoder models (mT5) achieve the highest performance compared with other popular models, and multilingual training can further improve the average performance. Notably, multilingual large language models (e.g., BLOOM) are still inadequate to perform CLSP tasks. We also find that the performance gap between monolingual training and cross-lingual transfer learning is still significant for multilingual models, though it can be mitigated by cross-lingual few-shot training. Our dataset and code are available at https://github.com/psunlpgroup/XSemPLR.
There has been increasing interest in synthesizing data to improve downstream text-to-SQL tasks. In this paper, we examined the existing synthesized datasets and discovered that state-of-the-art text-to-SQL algorithms did not further improve on popular benchmarks when trained with augmented synthetic data. We observed three shortcomings: illogical synthetic SQL queries from independent column sampling, arbitrary table joins, and language gaps between the synthesized SQL and natural language question (NLQ) pair. To address these issues, we propose a novel synthesis framework that imposes strong typing constraints, incorporates key relationships from schema, and conducts schema-distance-weighted column sampling. We also adopt an intermediate representation (IR) for the SQL-to-text task to further improve the quality of the generated NLQ. When existing powerful text-to-SQL parsers are pretrained on our high-quality synthesized data, these models have significant accuracy boosts and achieve new state-of-the-art performance on Spider. We also demonstrate the effectiveness of our techniques with ablation studies
This research addresses the challenges of Cross-Lingual Summarization (CLS) in low-resource scenarios and over imbalanced multilingual data. Existing CLS studies mostly resort to pipeline frameworks or multi-task methods in bilingual settings. However, they ignore the data imbalance in multilingual scenarios and do not utilize the high-resource monolingual summarization data. In this paper, we propose the Aligned CROSs-lingual Summarization (ACROSS) model to tackle these issues. Our framework aligns low-resource cross-lingual data with high-resource monolingual data via contrastive and consistency loss, which help enrich low-resource information for high-quality summaries. In addition, we introduce a data augmentation method that can select informative monolingual sentences, which facilitates a deep exploration of high-resource information and introduce new information for low-resource languages. Experiments on the CrossSum dataset show that ACROSS outperforms baseline models and obtains consistently dominant performance on 45 language pairs.
Modern NLP models are often trained over large untrusted datasets, raising the potential for a malicious adversary to compromise model behaviour. For instance, backdoors can be implanted through crafting training instances with a specific textual trigger and a target label. This paper posits that backdoor poisoning attacks exhibit a spurious correlation between simple text features and classification labels, and accordingly, proposes methods for mitigating spurious correlation as means of defence. Our empirical study reveals that the malicious triggers are highly correlated to their target labels; therefore such correlations are extremely distinguishable compared to those scores of benign features, and can be used to filter out potentially problematic instances. Compared with several existing defences, our defence method significantly reduces attack success rates across backdoor attacks, and in the case of insertion-based attacks, our method provides a near-perfect defence.
Accurate knowledge selection is critical in knowledge-grounded dialogue systems. Towards a closer look at it, we offer a novel perspective to organize existing literature, i.e., knowledge selection coupled with, after, and before generation. We focus on the third under-explored category of study, which can not only select knowledge accurately in advance, but has the advantage to reduce the learning, adjustment, and interpretation burden of subsequent response generation models, especially LLMs. We propose \tt{GATE}, a generator-agnostic knowledge selection method, to prepare knowledge for subsequent response generation models by selecting context-related knowledge among different knowledge structures and variable knowledge requirements. Experimental results demonstrate the superiority of \tt{GATE}, and indicate that knowledge selection before generation is a lightweight yet effective way to facilitate LLMs (e.g., ChatGPT) to generate more informative responses.
Although large language models (LLMs) are impressive in solving various tasks, they can quickly be outdated after deployment. Maintaining their up-to-date status is a pressing concern in the current era. This paper provides a comprehensive review of recent advances in aligning deployed LLMs with the ever-changing world knowledge. We categorize research works systemically and provide in-depth comparisons and discussions. We also discuss existing challenges and highlight future directions to facilitate research in this field.
Backdoor attacks are an insidious security threat against machine learning models. Adversaries can manipulate the predictions of compromised models by inserting triggers into the training phase. Various backdoor attacks have been devised which can achieve nearly perfect attack success without affecting model predictions for clean inputs. Means of mitigating such vulnerabilities are underdeveloped, especially in natural language processing. To fill this gap, we introduce IMBERT, which uses either gradients or self-attention scores derived from victim models to self-defend against backdoor attacks at inference time. Our empirical studies demonstrate that IMBERT can effectively identify up to 98.5% of inserted triggers. Thus, it significantly reduces the attack success rate while attaining competitive accuracy on the clean dataset across widespread insertion-based attacks compared to two baselines. Finally, we show that our approach is model-agnostic, and can be easily ported to several pre-trained transformer models.
Empathetic dialogue assembles emotion understanding, feeling projection, and appropriate response generation. Existing work for empathetic dialogue generation concentrates on the two-party conversation scenario. Multi-party dialogues, however, are pervasive in reality. Furthermore, emotion and sensibility are typically confused; a refined empathy analysis is needed for comprehending fragile and nuanced human feelings. We address these issues by proposing a novel task called Multi-Party Empathetic Dialogue Generation in this study. Additionally, a Static-Dynamic model for Multi-Party Empathetic Dialogue Generation, SDMPED, is introduced as a baseline by exploring the static sensibility and dynamic emotion for the multi-party empathetic dialogue learning, the aspects that help SDMPED achieve the state-of-the-art performance.
Modelling prosody variation is critical for synthesizing natural and expressive speech in end-to-end text-to-speech (TTS) systems. In this paper, a cross-utterance conditional VAE (CUC-VAE) is proposed to estimate a posterior probability distribution of the latent prosody features for each phoneme by conditioning on acoustic features, speaker information, and text features obtained from both past and future sentences. At inference time, instead of the standard Gaussian distribution used by VAE, CUC-VAE allows sampling from an utterance-specific prior distribution conditioned on cross-utterance information, which allows the prosody features generated by the TTS system to be related to the context and is more similar to how humans naturally produce prosody. The performance of CUC-VAE is evaluated via a qualitative listening test for naturalness, intelligibility and quantitative measurements, including word error rates and the standard deviation of prosody attributes. Experimental results on LJ-Speech and LibriTTS data show that the proposed CUC-VAE TTS system improves naturalness and prosody diversity with clear margins.
Procedural Multimodal Documents (PMDs) organize textual instructions and corresponding images step by step. Comprehending PMDs and inducing their representations for the downstream reasoning tasks is designated as Procedural MultiModal Machine Comprehension (M3C). In this study, we approach Procedural M3C at a fine-grained level (compared with existing explorations at a document or sentence level), that is, entity. With delicate consideration, we model entity both in its temporal and cross-modal relation and propose a novel Temporal-Modal Entity Graph (TMEG). Specifically, graph structure is formulated to capture textual and visual entities and trace their temporal-modal evolution. In addition, a graph aggregation module is introduced to conduct graph encoding and reasoning. Comprehensive experiments across three Procedural M3C tasks are conducted on a traditional dataset RecipeQA and our new dataset CraftQA, which can better evaluate the generalization of TMEG.
Neural Machine Translation (NMT) systems exhibit problematic biases, such as stereotypical gender bias in the translation of occupation terms into languages with grammatical gender. In this paper we describe a new source of bias prevalent in NMT systems, relating to translations of sentences containing person names. To correctly translate such sentences, a NMT system needs to determine the gender of the name. We show that leading systems are particularly poor at this task, especially for female given names. This bias is deeper than given name gender: we show that the translation of terms with ambiguous sentiment can also be affected by person names, and the same holds true for proper nouns denoting race. To mitigate these biases we propose a simple but effective data augmentation method based on randomly switching entities during translation, which effectively eliminates the problem without any effect on translation quality.
Most recent research on Text-to-SQL semantic parsing relies on either parser itself or simple heuristic based approach to understand natural language query (NLQ). When synthesizing a SQL query, there is no explicit semantic information of NLQ available to the parser which leads to undesirable generalization performance. In addition, without lexical-level fine-grained query understanding, linking between query and database can only rely on fuzzy string match which leads to suboptimal performance in real applications. In view of this, in this paper we present a general-purpose, modular neural semantic parsing framework that is based on token-level fine-grained query understanding. Our framework consists of three modules: named entity recognizer (NER), neural entity linker (NEL) and neural semantic parser (NSP). By jointly modeling query and database, NER model analyzes user intents and identifies entities in the query. NEL model links typed entities to schema and cell values in database. Parser model leverages available semantic information and linking results and synthesizes tree-structured SQL queries based on dynamically generated grammar. Experiments on SQUALL, a newly released semantic parsing dataset, show that we can achieve 56.8% execution accuracy on WikiTableQuestions (WTQ) test set, which outperforms the state-of-the-art model by 2.7%.
Neural machine translation (NMT) systems are vulnerable to backdoor attacks, whereby an attacker injects poisoned samples into training such that a trained model produces malicious translations. Nevertheless, there is little research on defending against such backdoor attacks in NMT. In this paper, we first show that backdoor attacks that have been successful in text classification are also effective against machine translation tasks. We then present a novel defence method that exploits a key property of most backdoor attacks: namely the asymmetry between the source and target language sentences, which is used to facilitate malicious text insertions, substitutions and suchlike. Our technique uses word alignment coupled with language model scoring to detect outlier tokens, and thus can find and filter out training instances which may contain backdoors. Experimental results demonstrate that our technique can significantly reduce the success of various attacks by up to 89.0%, while not affecting predictive accuracy.
From pretrained contextual embedding to document-level embedding, the selection and construction of embedding have drawn more and more attention in the NER domain in recent research. This paper aims to discuss the performance of ensemble embeddings on complex NER tasks. Enlightened by Wang’s methodology, we try to replicate the dominating power of ensemble models with reinforcement learning optimizor on plain NER tasks to complex ones. Based on the composition of semeval dataset, the performance of the applied model is tested on lower-context, QA, and search query scenarios together with its zero-shot learning ability. Results show that with abundant training data, the model can achieve similar performance on lower-context cases compared to plain NER cases, but can barely transfer the performance to other scenarios in the test phase.
Large scale pre-training models have been widely used in named entity recognition (NER) tasks. However, model ensemble through parameter averaging or voting can not give full play to the differentiation advantages of different models, especially in the open domain. This paper describes our NER system in the SemEval 2022 task11: MultiCoNER. We proposed an effective system to adaptively ensemble pre-trained language models by a Transformer layer. By assigning different weights to each model for different inputs, we adopted the Transformer layer to integrate the advantages of diverse models effectively. Experimental results show that our method achieves superior performances in Farsi and Dutch.
The human recognition system has presented the remarkable ability to effortlessly learn novel knowledge from only a few trigger events based on prior knowledge, which is called insight learning. Mimicking such behavior on Knowledge Graph Reasoning (KGR) is an interesting and challenging research problem with many practical applications. Simultaneously, existing works, such as knowledge embedding and few-shot learning models, have been limited to conducting KGR in either “seen-to-seen” or “unseen-to-unseen” scenarios. To this end, we propose a neural insight learning framework named Eureka to bridge the “seen” to “unseen” gap. Eureka is empowered to learn the seen relations with sufficient training triples while providing the flexibility of learning unseen relations given only one trigger without sacrificing its performance on seen relations. Eureka meets our expectation of the model to acquire seen and unseen relations at no extra cost, and eliminate the need to retrain when encountering emerging unseen relations. Experimental results on two real-world datasets demonstrate that the proposed framework also outperforms various state-of-the-art baselines on datasets of both seen and unseen relations.
Prior studies have found that women self-promote less than men due to gender stereotypes. In this study we built a BERT-based NLP model to predict whether a Congressional tweet shows self-promotion or not and then used this model to examine whether a gender gap in self-promotion exists among Congressional tweets. After analyzing 2 million Congressional tweets from July 2017 to March 2021, controlling for a number of factors that include political party, chamber, age, number of terms in Congress, number of daily tweets, and number of followers, we found that women in Congress actually perform more self-promotion on Twitter, indicating a reversal of traditional gender norms where women self-promote less than men.
Multimodal summarization becomes increasingly significant as it is the basis for question answering, Web search, and many other downstream tasks. However, its learning materials have been lacking a holistic organization by integrating resources from various modalities, thereby lagging behind the research progress of this field. In this study, we release a full-scale multimodal dataset comprehensively gathering documents, summaries, images, captions, videos, audios, transcripts, and titles in English from CNN and Daily Mail. To our best knowledge, this is the first collection that spans all modalities and nearly comprises all types of materials available in this community. In addition, we devise a baseline model based on the novel dataset, which employs a newly proposed Jump-Attention mechanism based on transcripts. The experimental results validate the important assistance role of the external information for multimodal summarization.
NLP models are vulnerable to data poisoning attacks. One type of attack can plant a backdoor in a model by injecting poisoned examples in training, causing the victim model to misclassify test instances which include a specific pattern. Although defences exist to counter these attacks, they are specific to an attack type or pattern. In this paper, we propose a generic defence mechanism by making the training process robust to poisoning attacks through gradient shaping methods, based on differentially private training. We show that our method is highly effective in mitigating, or even eliminating, poisoning attacks on text classification, with only a small cost in predictive accuracy.
Health and medical researchers often give clinical and policy recommendations to inform health practice and public health policy. However, no current health information system supports the direct retrieval of health advice. This study fills the gap by developing and validating an NLP-based prediction model for identifying health advice in research publications. We annotated a corpus of 6,000 sentences extracted from structured abstracts in PubMed publications as ‘“strong advice”, “weak advice”, or “no advice”, and developed a BERT-based model that can predict, with a macro-averaged F1-score of 0.93, whether a sentence gives strong advice, weak advice, or not. The prediction model generalized well to sentences in both unstructured abstracts and discussion sections, where health advice normally appears. We also conducted a case study that applied this prediction model to retrieve specific health advice on COVID-19 treatments from LitCovid, a large COVID research literature portal, demonstrating the usefulness of retrieving health advice sentences as an advanced research literature navigation function for health researchers and the general public.
Press releases have an increasingly strong influence on media coverage of health research; however, they have been found to contain seriously exaggerated claims that can misinform the public and undermine public trust in science. In this study we propose an NLP approach to identify exaggerated causal claims made in health press releases that report on observational studies, which are designed to establish correlational findings, but are often exaggerated as causal. We developed a new corpus and trained models that can identify causal claims in the main statements in a press release. By comparing the claims made in a press release with the corresponding claims in the original research paper, we found that 22% of press releases made exaggerated causal claims from correlational findings in observational studies. Furthermore, universities exaggerated more often than journal publishers by a ratio of 1.5 to 1. Encouragingly, the exaggeration rate has slightly decreased over the past 10 years, despite the increase of the total number of press releases. More research is needed to understand the cause of the decreasing pattern.
Generating questions based on answers and relevant contexts is a challenging task. Recent work mainly pays attention to the quality of a single generated question. However, question generation is actually a one-to-many problem, as it is possible to raise questions with different focuses on contexts and various means of expression. In this paper, we explore the diversity of question generation and come up with methods from these two aspects. Specifically, we relate contextual focuses with content selectors, which are modeled by a continuous latent variable with the technique of conditional variational auto-encoder (CVAE). In the realization of CVAE, a multimodal prior distribution is adopted to allow for more diverse content selectors. To take into account various means of expression, question types are explicitly modeled and a diversity-promoting algorithm is proposed further. Experimental results on public datasets show that our proposed method can significantly improve the diversity of generated questions, especially from the perspective of using different question types. Overall, our proposed method achieves a better trade-off between generation quality and diversity compared with existing approaches.
Causal interpretation of correlational findings from observational studies has been a major type of misinformation in science communication. Prior studies on identifying inappropriate use of causal language relied on manual content analysis, which is not scalable for examining a large volume of science publications. In this study, we first annotated a corpus of over 3,000 PubMed research conclusion sentences, then developed a BERT-based prediction model that classifies conclusion sentences into “no relationship”, “correlational”, “conditional causal”, and “direct causal” categories, achieving an accuracy of 0.90 and a macro-F1 of 0.88. We then applied the prediction model to measure the causal language use in the research conclusions of about 38,000 observational studies in PubMed. The prediction result shows that 21.7% studies used direct causal language exclusively in their conclusions, and 32.4% used some direct causal language. We also found that the ratio of causal language use differs among authors from different countries, challenging the notion of a shared consensus on causal language use in the global science community. Our prediction model could also be used to help identify the inappropriate use of causal language in science publications.
Silent speech interfaces (SSIs) are devices that enable speech communication when audible speech is unavailable. Articulation-to-speech (ATS) synthesis is a software design in SSI that directly converts articulatory movement information into audible speech signals. Permanent magnetic articulograph (PMA) is a wireless articulator motion tracking technology that is similar to commercial, wired Electromagnetic Articulograph (EMA). PMA has shown great potential for practical SSI applications, because it is wireless. The ATS performance of PMA, however, is unknown when compared with current EMA. In this study, we compared the performance of ATS using a PMA we recently developed and a commercially available EMA (NDI Wave system). Datasets with same stimuli and size that were collected from tongue tip were used in the comparison. The experimental results indicated the performance of PMA was close to, although not as equally good as that of EMA. Furthermore, in PMA, converting the raw magnetic signals to positional signals did not significantly affect the performance of ATS, which support the future direction in PMA-based ATS can be focused on the use of positional signals to maximize the benefit of spatial analysis.
Amyotrophic Lateral Sclerosis (ALS) is a progressive neurological disease that leads to degeneration of motor neurons and, as a result, inhibits the ability of the brain to control muscle movements. Monitoring the progression of ALS is of fundamental importance due to the wide variability in disease outlook that exists across patients. This progression is typically tracked using the ALS functional rating scale - revised (ALSFRS-R), which is the current clinical assessment of a patient’s level of functional impairment including speech and other motor tasks. In this paper, we investigated automatic estimation of the ALSFRS-R bulbar subscore from acoustic and articulatory movement samples. Experimental results demonstrated the AFSFRS-R bulbar subscore can be predicted from speech samples, which has clinical implication for automatic monitoring of the disease progression of ALS using speech information.
Learning social media content is the basis of many real-world applications, including information retrieval and recommendation systems, among others. In contrast with previous works that focus mainly on single modal or bi-modal learning, we propose to learn social media content by fusing jointly textual, acoustic, and visual information (JTAV). Effective strategies are proposed to extract fine-grained features of each modality, that is, attBiGRU and DCRNN. We also introduce cross-modal fusion and attentive pooling techniques to integrate multi-modal information comprehensively. Extensive experimental evaluation conducted on real-world datasets demonstrate our proposed model outperforms the state-of-the-art approaches by a large margin.