Jungseob Lee


2023

pdf bib
PEEP-Talk: A Situational Dialogue-based Chatbot for English Education
Seungjun Lee | Yoonna Jang | Chanjun Park | Jungseob Lee | Jaehyung Seo | Hyeonseok Moon | Sugyeong Eo | Seounghoon Lee | Bernardo Yahya | Heuiseok Lim
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)

English is acknowledged worldwide as a mode of communication. However, due to the absence of realistic practicing scenarios, students learning English as a foreign language (EFL) typically have limited chances to converse and share feedback with others. In this paper, we propose PEEP-Talk, a real-world situational dialogue-based chatbot designed for English education. It also naturally switches to a new topic or situation in response to out-of-topic utterances, which are common among English beginners. Furthermore, PEEP-Talk provides feedback score on conversation and grammar error correction. We performed automatic and user evaluations to validate performance and education efficiency of our system. The results show that PEEP-Talk generates appropriate responses in various real-life situations while providing accurate feedback to learners. Moreover, we demonstrate a positive impact on English-speaking, grammar, and English learning anxiety, implying that PEEP-Talk can lower the barrier to learning natural conversation in effective ways.

2022

pdf bib
QUAK: A Synthetic Quality Estimation Dataset for Korean-English Neural Machine Translation
Sugyeong Eo | Chanjun Park | Hyeonseok Moon | Jaehyung Seo | Gyeongmin Kim | Jungseob Lee | Heuiseok Lim
Proceedings of the 29th International Conference on Computational Linguistics

With the recent advance in neural machine translation demonstrating its importance, research on quality estimation (QE) has been steadily progressing. QE aims to automatically predict the quality of machine translation (MT) output without reference sentences. Despite its high utility in the real world, there remain several limitations concerning manual QE data creation: inevitably incurred non-trivial costs due to the need for translation experts, and issues with data scaling and language expansion. To tackle these limitations, we present QUAK, a Korean-English synthetic QE dataset generated in a fully automatic manner. This consists of three sub-QUAK datasets QUAK-M, QUAK-P, and QUAK-H, produced through three strategies that are relatively free from language constraints. Since each strategy requires no human effort, which facilitates scalability, we scale our data up to 1.58M for QUAK-P, H and 6.58M for QUAK-M. As an experiment, we quantitatively analyze word-level QE results in various ways while performing statistical analysis. Moreover, we show that datasets scaled in an efficient way also contribute to performance improvements by observing meaningful performance gains in QUAK-M, P when adding data up to 1.58M.

pdf bib
Focus on FoCus: Is FoCus focused on Context, Knowledge and Persona?
SeungYoon Lee | Jungseob Lee | Chanjun Park | Sugyeong Eo | Hyeonseok Moon | Jaehyung Seo | Jeongbae Park | Heuiseok Lim
Proceedings of the 1st Workshop on Customized Chat Grounding Persona and Knowledge

Rather than continuing the conversation based on personalized or implicit information, the existing conversation system generates dialogue by focusing only on the superficial content. To solve this problem, FoCus was recently released. FoCus is a persona-knowledge grounded dialogue generation dataset that leverages Wikipedia’s knowledge and personal persona, focusing on the landmarks provided by Google, enabling user-centered conversation. However, a closer empirical study is needed since research in the field is still in its early stages. Therefore, we fling two research questions about FoCus. “Is the FoCus whether for conversation or question answering?” to identify the structural problems of the dataset. “Does the FoCus model do real knowledge blending?” to closely demonstrate that the model acquires actual knowledge. As a result of the experiment, we present that the FoCus model could not correctly blend the knowledge according to the input dialogue and that the dataset design is unsuitable for the multi-turn conversation.

pdf bib
Empirical Analysis of Noising Scheme based Synthetic Data Generation for Automatic Post-editing
Hyeonseok Moon | Chanjun Park | Seolhwa Lee | Jaehyung Seo | Jungseob Lee | Sugyeong Eo | Heuiseok Lim
Proceedings of the Thirteenth Language Resources and Evaluation Conference

Automatic post-editing (APE) refers to a research field that aims to automatically correct errors included in the translation sentences derived by the machine translation system. This study has several limitations, considering the data acquisition, because there is no official dataset for most language pairs. Moreover, the amount of data is restricted even for language pairs in which official data has been released, such as WMT. To solve this problem and promote universal APE research regardless of APE data existence, this study proposes a method for automatically generating APE data based on a noising scheme from a parallel corpus. Particularly, we propose a human mimicking errors-based noising scheme that considers a practical correction process at the human level. We propose a precise inspection to attain high performance, and we derived the optimal noising schemes that show substantial effectiveness. Through these, we also demonstrate that depending on the type of noise, the noising scheme-based APE data generation may lead to inferior performance. In addition, we propose a dynamic noise injection strategy that enables the acquisition of a robust error correction capability and demonstrated its effectiveness by comparative analysis. This study enables obtaining a high performance APE model without human-generated data and can promote universal APE research for all language pairs targeting English.