2024
pdf
bib
abs
InfiniPot: Infinite Context Processing on Memory-Constrained LLMs
Minsoo Kim
|
Kyuhong Shim
|
Jungwook Choi
|
Simyung Chang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Handling long input contexts remains a significant challenge for Large Language Models (LLMs), particularly in resource-constrained environments such as mobile devices. Our work aims to address this limitation by introducing InfiniPot, a novel KV cache control framework designed to enable pre-trained LLMs to manage extensive sequences within fixed memory constraints efficiently, without requiring additional training. InfiniPot leverages Continual Context Distillation (CCD), an iterative process that compresses and retains essential information through novel importance metrics, effectively maintaining critical data even without access to future context. Our comprehensive evaluations indicate that InfiniPot significantly outperforms models trained for long contexts in various NLP tasks, establishing its efficacy and versatility. This work represents a substantial advancement toward making LLMs applicable to a broader range of real-world scenarios.
pdf
bib
abs
RA-LoRA: Rank-Adaptive Parameter-Efficient Fine-Tuning for Accurate 2-bit Quantized Large Language Models
Minsoo Kim
|
Sihwa Lee
|
Wonyong Sung
|
Jungwook Choi
Findings of the Association for Computational Linguistics: ACL 2024
Deploying large language models (LLMs) with their extensive parameters and high memory demands challenges computational efficiency, particularly in fine-tuning for specific applications with limited resources. Techniques like Low-Rank Adaptation (LoRA) help by training a smaller, modifiable extension of the base model to reduce memory usage. However, combining quantization with LoRA, especially in low-bit scenarios, can lead to performance losses due to quantization errors. Our innovative Rank-Adaptive LoRA (RA-LoRA) addresses this by dynamically adjusting the adapter’s rank using rank-subspace analysis, optimizing performance with fewer parameters. We tested RA-LoRA on state-of-the-art LLMs for 2-bit efficient fine-tuning, showing it can improve model accuracy with minimal trainable parameters, marking a leap forward in quantization-aware fine-tuning methods and highlighting the significance of rank dynamics in optimizing quantized LLMs.
pdf
bib
abs
Improving Conversational Abilities of Quantized Large Language Models via Direct Preference Alignment
Janghwan Lee
|
Seongmin Park
|
Sukjin Hong
|
Minsoo Kim
|
Du-Seong Chang
|
Jungwook Choi
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
The rapid advancement of large language models (LLMs) has facilitated their transformation into conversational chatbots that can grasp contextual nuances and generate pertinent sentences, closely mirroring human values through advanced techniques such as instruction tuning and reinforcement learning from human feedback (RLHF). However, the computational efficiency required for LLMs, achieved through techniques like post-training quantization (PTQ), presents challenges such as token-flipping that can impair chatbot performance. In response, we propose a novel preference alignment approach, quantization-aware direct preference optimization (QDPO), that aligns quantized LLMs with their full-precision counterparts, improving conversational abilities. Evaluated on two instruction-tuned LLMs in various languages, QDPO demonstrated superior performance in improving conversational abilities compared to established PTQ and knowledge-distillation fine-tuning techniques, marking a significant step forward in the development of efficient and effective conversational LLMs.
2023
pdf
bib
abs
Enhancing Computation Efficiency in Large Language Models through Weight and Activation Quantization
Janghwan Lee
|
Minsoo Kim
|
Seungcheol Baek
|
Seok Hwang
|
Wonyong Sung
|
Jungwook Choi
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Large Language Models (LLMs) are proficient in natural language processing tasks, but their deployment is often restricted by extensive parameter sizes and computational demands. This paper focuses on post-training quantization (PTQ) in LLMs, specifically 4-bit weight and 8-bit activation (W4A8) quantization, to enhance computational efficiency—a topic less explored compared to weight-only quantization. We present two innovative techniques: activation-quantization-aware scaling (AQAS) and sequence-length-aware calibration (SLAC) to enhance PTQ by considering the combined effects on weights and activations and aligning calibration sequence lengths to target tasks. Moreover, we introduce dINT, a hybrid data format combining integer and denormal representations, to address the underflow issue in W4A8 quantization, where small values are rounded to zero. Through rigorous evaluations of LLMs, including OPT and LLaMA, we demonstrate that our techniques significantly boost task accuracies to levels comparable with full-precision models. By developing arithmetic units compatible with dINT, we further confirm that our methods yield a 2× hardware efficiency improvement compared to 8-bit integer MAC unit.
pdf
bib
abs
Teacher Intervention: Improving Convergence of Quantization Aware Training for Ultra-Low Precision Transformers
Minsoo Kim
|
Kyuhong Shim
|
Seongmin Park
|
Wonyong Sung
|
Jungwook Choi
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics
Pre-trained Transformer models such as BERT have shown great success in a wide range of applications, but at the cost of substantial increases in model complexity. Quantization-aware training (QAT) is a promising method to lower the implementation cost and energy consumption. However, aggressive quantization below 2-bit causes considerable accuracy degradation due to unstable convergence, especially when the downstream dataset is not abundant. This work proposes a proactive knowledge distillation method called Teacher Intervention (TI) for fast converging QAT of ultra-low precision pre-trained Transformers. TI intervenes layer-wise signal propagation with the intact signal from the teacher to remove the interference of propagated quantization errors, smoothing loss surface of QAT and expediting the convergence. Furthermore, we propose a gradual intervention mechanism to stabilize the recovery of subsections of Transformer layers from quantization. The proposed schemes enable fast convergence of QAT and improve the model accuracy regardless of the diverse characteristics of downstream fine-tuning tasks. We demonstrate that TI consistently achieves superior accuracy with significantly lower fine-tuning iterations on well-known Transformers of natural language processing as well as computer vision compared to the state-of-the-art QAT methods.
2022
pdf
bib
abs
Understanding and Improving Knowledge Distillation for Quantization Aware Training of Large Transformer Encoders
Minsoo Kim
|
Sihwa Lee
|
Suk-Jin Hong
|
Du-Seong Chang
|
Jungwook Choi
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
Knowledge distillation (KD) has been a ubiquitous method for model compression to strengthen the capability of a lightweight model with the transferred knowledge from the teacher. In particular, KD has been employed in quantization-aware training (QAT) of Transformer encoders like BERT to improve the accuracy of the student model with the reduced-precision weight parameters. However, little is understood about which of the various KD approaches best fits the QAT of Transformers. In this work, we provide an in-depth analysis of the mechanism of KD on attention recovery of quantized large Transformers. In particular, we reveal that the previously adopted MSE loss on the attention score is insufficient for recovering the self-attention information. Therefore, we propose two KD methods; attention-map and attention-output losses. Furthermore, we explore the unification of both losses to address task-dependent preference between attention-map and output losses. The experimental results on various Transformer encoder models demonstrate that the proposed KD methods achieve state-of-the-art accuracy for QAT with sub-2-bit weight quantization.