Junjie Chen


pdf bib
APIRecX: Cross-Library API Recommendation via Pre-Trained Language Model
Yuning Kang | Zan Wang | Hongyu Zhang | Junjie Chen | Hanmo You
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

For programmers, learning the usage of APIs (Application Programming Interfaces) of a software library is important yet difficult. API recommendation tools can help developers use APIs by recommending which APIs to be used next given the APIs that have been written. Traditionally, language models such as N-gram are applied to API recommendation. However, because the software libraries keep changing and new libraries keep emerging, new APIs are common. These new APIs can be seen as OOV (out of vocabulary) words and cannot be handled well by existing API recommendation approaches due to the lack of training data. In this paper, we propose APIRecX, the first cross-library API recommendation approach, which uses BPE to split each API call in each API sequence and pre-trains a GPT based language model. It then recommends APIs by fine-tuning the pre-trained model. APIRecX can migrate the knowledge of existing libraries to a new library, and can recommend APIs that are previously regarded as OOV. We evaluate APIRecX on six libraries and the results confirm its effectiveness by comparing with two typical API recommendation approaches.


pdf bib
A System for Worldwide COVID-19 Information Aggregation
Akiko Aizawa | Frederic Bergeron | Junjie Chen | Fei Cheng | Katsuhiko Hayashi | Kentaro Inui | Hiroyoshi Ito | Daisuke Kawahara | Masaru Kitsuregawa | Hirokazu Kiyomaru | Masaki Kobayashi | Takashi Kodama | Sadao Kurohashi | Qianying Liu | Masaki Matsubara | Yusuke Miyao | Atsuyuki Morishima | Yugo Murawaki | Kazumasa Omura | Haiyue Song | Eiichiro Sumita | Shinji Suzuki | Ribeka Tanaka | Yu Tanaka | Masashi Toyoda | Nobuhiro Ueda | Honai Ueoka | Masao Utiyama | Ying Zhong
Proceedings of the 1st Workshop on NLP for COVID-19 (Part 2) at EMNLP 2020

The global pandemic of COVID-19 has made the public pay close attention to related news, covering various domains, such as sanitation, treatment, and effects on education. Meanwhile, the COVID-19 condition is very different among the countries (e.g., policies and development of the epidemic), and thus citizens would be interested in news in foreign countries. We build a system for worldwide COVID-19 information aggregation containing reliable articles from 10 regions in 7 languages sorted by topics. Our reliable COVID-19 related website dataset collected through crowdsourcing ensures the quality of the articles. A neural machine translation module translates articles in other languages into Japanese and English. A BERT-based topic-classifier trained on our article-topic pair dataset helps users find their interested information efficiently by putting articles into different categories.