Junjie Huang


pdf bib
WhiteningBERT: An Easy Unsupervised Sentence Embedding Approach
Junjie Huang | Duyu Tang | Wanjun Zhong | Shuai Lu | Linjun Shou | Ming Gong | Daxin Jiang | Nan Duan
Findings of the Association for Computational Linguistics: EMNLP 2021

Producing the embedding of a sentence in anunsupervised way is valuable to natural language matching and retrieval problems in practice. In this work, we conduct a thorough examination of pretrained model based unsupervised sentence embeddings. We study on fourpretrained models and conduct massive experiments on seven datasets regarding sentence semantics. We have three main findings. First, averaging all tokens is better than only using [CLS] vector. Second, combining both topand bottom layers is better than only using toplayers. Lastly, an easy whitening-based vector normalization strategy with less than 10 linesof code consistently boosts the performance. The whole project including codes and data is publicly available at https://github.com/Jun-jie-Huang/WhiteningBERT.

pdf bib
CoSQA: 20,000+ Web Queries for Code Search and Question Answering
Junjie Huang | Duyu Tang | Linjun Shou | Ming Gong | Ke Xu | Daxin Jiang | Ming Zhou | Nan Duan
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Finding codes given natural language query is beneficial to the productivity of software developers. Future progress towards better semantic matching between query and code requires richer supervised training resources. To remedy this, we introduce CoSQA dataset. It includes 20,604 labels for pairs of natural language queries and codes, each annotated by at least 3 human annotators. We further introduce a contrastive learning method dubbed CoCLR to enhance text-code matching, which works as a data augmenter to bring more artificially generated training instances. We show that, evaluated on CodeXGLUE with the same CodeBERT model, training on CoSQA improves the accuracy of code question answering by 5.1% and incorporating CoCLR brings a further improvement of 10.5%.


pdf bib
Modeling Semantic Compositionality with Sememe Knowledge
Fanchao Qi | Junjie Huang | Chenghao Yang | Zhiyuan Liu | Xiao Chen | Qun Liu | Maosong Sun
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Semantic compositionality (SC) refers to the phenomenon that the meaning of a complex linguistic unit can be composed of the meanings of its constituents. Most related works focus on using complicated compositionality functions to model SC while few works consider external knowledge in models. In this paper, we verify the effectiveness of sememes, the minimum semantic units of human languages, in modeling SC by a confirmatory experiment. Furthermore, we make the first attempt to incorporate sememe knowledge into SC models, and employ the sememe-incorporated models in learning representations of multiword expressions, a typical task of SC. In experiments, we implement our models by incorporating knowledge from a famous sememe knowledge base HowNet and perform both intrinsic and extrinsic evaluations. Experimental results show that our models achieve significant performance boost as compared to the baseline methods without considering sememe knowledge. We further conduct quantitative analysis and case studies to demonstrate the effectiveness of applying sememe knowledge in modeling SC.All the code and data of this paper can be obtained on https://github.com/thunlp/Sememe-SC.