Junkun Chen


2022

pdf bib
PaddleSpeech: An Easy-to-Use All-in-One Speech Toolkit
Hui Zhang | Tian Yuan | Junkun Chen | Xintong Li | Renjie Zheng | Yuxin Huang | Xiaojie Chen | Enlei Gong | Zeyu Chen | Xiaoguang Hu | Dianhai Yu | Yanjun Ma | Liang Huang
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: System Demonstrations

PaddleSpeech is an open-source all-in-one speech toolkit. It aims at facilitating the development and research of speech processing technologies by providing an easy-to-use command-line interface and a simple code structure. This paper describes the design philosophy and core architecture of PaddleSpeech to support several essential speech-to-text and text-to-speech tasks. PaddleSpeech achieves competitive or state-of-the-art performance on various speech datasets and implements the most popular methods. It also provides recipes and pretrained models to quickly reproduce the experimental results in this paper. PaddleSpeech is publicly avaiable at https://github.com/PaddlePaddle/PaddleSpeech.

2021

pdf bib
Direct Simultaneous Speech-to-Text Translation Assisted by Synchronized Streaming ASR
Junkun Chen | Mingbo Ma | Renjie Zheng | Liang Huang
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
Improving Simultaneous Translation by Incorporating Pseudo-References with Fewer Reorderings
Junkun Chen | Renjie Zheng | Atsuhito Kita | Mingbo Ma | Liang Huang
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Simultaneous translation is vastly different from full-sentence translation, in the sense that it starts translation before the source sentence ends, with only a few words delay. However, due to the lack of large-scale, high-quality simultaneous translation datasets, most such systems are still trained on conventional full-sentence bitexts. This is far from ideal for the simultaneous scenario due to the abundance of unnecessary long-distance reorderings in those bitexts. We propose a novel method that rewrites the target side of existing full-sentence corpora into simultaneous-style translation. Experiments on ZhEn and JaEn simultaneous translation show substantial improvements (up to +2.7 BLEU) with the addition of these generated pseudo-references.