Junyoung Son


2024

pdf bib
Hyper-BTS Dataset: Scalability and Enhanced Analysis of Back TranScription (BTS) for ASR Post-Processing
Chanjun Park | Jaehyung Seo | Seolhwa Lee | Junyoung Son | Hyeonseok Moon | Sugyeong Eo | Chanhee Lee | Heuiseok Lim
Findings of the Association for Computational Linguistics: EACL 2024

The recent advancements in the realm of Automatic Speech Recognition (ASR) post-processing have been primarily driven by sequence-to-sequence paradigms. Despite their effectiveness, these methods often demand substantial amounts of data, necessitating the expensive recruitment of phonetic transcription experts to rectify the erroneous outputs of ASR systems, thereby creating the desired training data. Back TranScription (BTS) alleviates this issue by generating ASR inputs from clean text via a Text-to-Speech (TTS) system. While initial studies on BTS exhibited promise, they were constrained by a limited dataset of just 200,000 sentence pairs, leaving the scalability of this method in question. In this study, we delve into the potential scalability of BTS. We introduce the “Hyper-BTS” dataset, a corpus approximately five times larger than that utilized in prior research. Additionally, we present innovative criteria for categorizing error types within ASR post-processing. This not only facilitates a more comprehensive qualitative analysis, which was absent in preceding studies, but also enhances the understanding of ASR error patterns. Our empirical results, both quantitative and qualitative, suggest that the enlarged scale of the Hyper-BTS dataset sufficiently addresses a vast majority of the ASR error categories. We make the Hyper-BTS dataset publicly available.

2023

pdf bib
Post-hoc Utterance Refining Method by Entity Mining for Faithful Knowledge Grounded Conversations
Yoonna Jang | Suhyune Son | Jeongwoo Lee | Junyoung Son | Yuna Hur | Jungwoo Lim | Hyeonseok Moon | Kisu Yang | Heuiseok Lim
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Despite the striking advances in recent language generation performance, model-generated responses have suffered from the chronic problem of hallucinations that are either untrue or unfaithful to a given source. Especially in the task of knowledge grounded conversation, the models are required to generate informative responses, but hallucinated utterances lead to miscommunication. In particular, entity-level hallucination that causes critical misinformation and undesirable conversation is one of the major concerns. To address this issue, we propose a post-hoc refinement method called REM. It aims to enhance the quality and faithfulness of hallucinated utterances by refining them based on the source knowledge. If the generated utterance has a low source-faithfulness score with the given knowledge, REM mines the key entities in the knowledge and implicitly uses them for refining the utterances. We verify that our method reduces entity hallucination in the utterance. Also, we show the adaptability and efficacy of REM with extensive experiments and generative results. Our code is available at https://github.com/YOONNAJANG/REM.

pdf bib
Explore the Way: Exploring Reasoning Path by Bridging Entities for Effective Cross-Document Relation Extraction
Junyoung Son | Jinsung Kim | Jungwoo Lim | Yoonna Jang | Heuiseok Lim
Findings of the Association for Computational Linguistics: EMNLP 2023

Cross-document relation extraction (CodRED) task aims to infer the relation between two entities mentioned in different documents within a reasoning path. Previous studies have concentrated on merely capturing implicit relations between the entities. However, humans usually utilize explicit information chains such as hyperlinks or additional searches to find the relations between two entities. Inspired by this, we propose Path wIth expLOraTion (PILOT) that provides the enhanced reasoning path by exploring the explicit clue information within the documents. PILOT finds the bridging entities which directly guide the paths between the entities and then employs them as stepstones to navigate desirable paths. We show that models with PILOT outperform the baselines in the CodRED task. Furthermore, we offer a variety of analyses to verify the validity of the reasoning paths constructed through PILOT, including evaluations using large language models such as ChatGPT.

2022

pdf bib
GRASP: Guiding Model with RelAtional Semantics Using Prompt for Dialogue Relation Extraction
Junyoung Son | Jinsung Kim | Jungwoo Lim | Heuiseok Lim
Proceedings of the 29th International Conference on Computational Linguistics

The dialogue-based relation extraction (DialogRE) task aims to predict the relations between argument pairs that appear in dialogue. Most previous studies utilize fine-tuning pre-trained language models (PLMs) only with extensive features to supplement the low information density of the dialogue by multiple speakers. To effectively exploit inherent knowledge of PLMs without extra layers and consider scattered semantic cues on the relation between the arguments, we propose a Guiding model with RelAtional Semantics using Prompt (GRASP). We adopt a prompt-based fine-tuning approach and capture relational semantic clues of a given dialogue with 1) an argument-aware prompt marker strategy and 2) the relational clue detection task. In the experiments, GRASP achieves state-of-the-art performance in terms of both F1 and F1c scores on a DialogRE dataset even though our method only leverages PLMs without adding any extra layers.

pdf bib
KoCHET: A Korean Cultural Heritage Corpus for Entity-related Tasks
Gyeongmin Kim | Jinsung Kim | Junyoung Son | Heuiseok Lim
Proceedings of the 29th International Conference on Computational Linguistics

As digitized traditional cultural heritage documents have rapidly increased, resulting in an increased need for preservation and management, practical recognition of entities and typification of their classes has become essential. To achieve this, we propose KoCHET - a Korean cultural heritage corpus for the typical entity-related tasks, i.e., named entity recognition (NER), relation extraction (RE), and entity typing (ET). Advised by cultural heritage experts based on the data construction guidelines of government-affiliated organizations, KoCHET consists of respectively 112,362, 38,765, 113,198 examples for NER, RE, and ET tasks, covering all entity types related to Korean cultural heritage. Moreover, unlike the existing public corpora, modified redistribution can be allowed both domestic and foreign researchers. Our experimental results make the practical usability of KoCHET more valuable in terms of cultural heritage. We also provide practical insights of KoCHET in terms of statistical and linguistic analysis. Our corpus is freely available at https://github.com/Gyeongmin47/KoCHET.