Jürgen Schmidhuber
2023
Approximating Two-Layer Feedforward Networks for Efficient Transformers
Róbert Csordás
|
Kazuki Irie
|
Jürgen Schmidhuber
Findings of the Association for Computational Linguistics: EMNLP 2023
How to reduce compute and memory requirements of neural networks (NNs) without sacrificing performance? Many recent works use sparse Mixtures of Experts (MoEs) to build resource-efficient large language models (LMs). Here we introduce several novel perspectives on MoEs, presenting a general framework that *unifies* various methods to *approximate two-layer NNs* (e.g., feedforward blocks of Transformers), including product-key memories (PKMs). Leveraging insights from this framework, we propose methods to improve both MoEs and PKMs. Unlike prior work that compares MoEs with dense baselines under the *compute-equal* condition, our evaluation condition is *parameter-equal*, which is crucial to properly evaluate LMs. We show that our MoEs are competitive with the *dense* Transformer-XL on both the WikiText-103 and enwiki8 datasets at two different scales, while being much more resource efficient. This demonstrates that MoEs are relevant not only to extremely large LMs but also to any-scale resource-efficient LMs. Our code is public.
Practical Computational Power of Linear Transformers and Their Recurrent and Self-Referential Extensions
Kazuki Irie
|
Róbert Csordás
|
Jürgen Schmidhuber
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Recent studies of the computational power of recurrent neural networks (RNNs) reveal a hierarchy of RNN architectures, given real-time and finite-precision assumptions. Here we study auto-regressive Transformers with linearised attention, a.k.a. linear Transformers (LTs) or Fast Weight Programmers (FWPs). LTs are special in the sense that they are equivalent to RNN-like sequence processors with a fixed-size state, while they can also be expressed as the now-popular self-attention networks. We show that many well-known results for the standard Transformer directly transfer to LTs/FWPs. Our formal language recognition experiments demonstrate how recently proposed FWP extensions such as recurrent FWPs and self-referential weight matrices successfully overcome certain limitations of the LT, e.g., allowing for generalisation on the parity problem. Our code is public.
Search