2024
pdf
bib
abs
ERD: A Framework for Improving LLM Reasoning for Cognitive Distortion Classification
Sehee Lim
|
Yejin Kim
|
Chi-Hyun Choi
|
Jy-yong Sohn
|
Byung-Hoon Kim
Proceedings of the 6th Clinical Natural Language Processing Workshop
Improving the accessibility of psychotherapy with the aid of Large Language Models (LLMs) is garnering a significant attention in recent years. Recognizing cognitive distortions from the interviewee’s utterances can be an essential part of psychotherapy, especially for cognitive behavioral therapy. In this paper, we propose ERD, which improves LLM-based cognitive distortion classification performance with the aid of additional modules of (1) extracting the parts related to cognitive distortion, and (2) debating the reasoning steps by multiple agents. Our experimental results on a public dataset show that ERD improves the multi-class F1 score as well as binary specificity score. Regarding the latter score, it turns out that our method is effective in debiasing the baseline method which has high false positive rate, especially when the summary of multi-agent debate is provided to LLMs.
pdf
bib
abs
Improving Multi-lingual Alignment Through Soft Contrastive Learning
Minsu Park
|
Seyeon Choi
|
Chanyeol Choi
|
Jun-Seong Kim
|
Jy-yong Sohn
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 4: Student Research Workshop)
Making decent multi-lingual sentence representations is critical to achieve high performances in cross-lingual downstream tasks. In this work, we propose a novel method to align multi-lingual embeddings based on the similarity of sentences measured by a pre-trained mono-lingual embedding model. Given translation sentence pairs, we train a multi-lingual model in a way that the similarity between cross-lingual embeddings follows the similarity of sentences measured at the mono-lingual teacher model. Our method can be considered as contrastive learning with soft labels defined as the similarity between sentences. Our experimental results on five languages show that our contrastive loss with soft labels far outperforms conventional constrastive loss with hard labels in various benchmarks for bitext mining tasks and STS tasks. In addition, our method outperforms existing multi-lingual embeddings including LaBSE, for Tatoeba dataset.
2023
pdf
bib
abs
Retrieval-based Evaluation for LLMs: A Case Study in Korean Legal QA
Cheol Ryu
|
Seolhwa Lee
|
Subeen Pang
|
Chanyeol Choi
|
Hojun Choi
|
Myeonggee Min
|
Jy-Yong Sohn
Proceedings of the Natural Legal Language Processing Workshop 2023
While large language models (LLMs) have demonstrated significant capabilities in text generation, their utilization in areas requiring domain-specific expertise, such as law, must be approached cautiously. This caution is warranted due to the inherent challenges associated with LLM-generated texts, including the potential presence of factual errors. Motivated by this issue, we propose Eval-RAG, a new evaluation method for LLM-generated texts. Unlike existing methods, Eval-RAG evaluates the validity of generated texts based on the related document that are collected by the retriever. In other words, Eval-RAG adopts the idea of retrieval augmented generation (RAG) for the purpose of evaluation. Our experimental results on Korean Legal Question-Answering (QA) tasks show that conventional LLM-based evaluation methods can be better aligned with Lawyers’ evaluations, by combining with Eval-RAG. In addition, our qualitative analysis show that Eval-RAG successfully finds the factual errors in LLM-generated texts, while existing evaluation methods cannot.
2022
pdf
bib
abs
Utilizing Language-Image Pretraining for Efficient and Robust Bilingual Word Alignment
Tuan Dinh
|
Jy-yong Sohn
|
Shashank Rajput
|
Timothy Ossowski
|
Yifei Ming
|
Junjie Hu
|
Dimitris Papailiopoulos
|
Kangwook Lee
Findings of the Association for Computational Linguistics: EMNLP 2022
Word translation without parallel corpora has become feasible, rivaling the performance of supervised methods. Recent findings have shown the improvement in accuracy and robustness of unsupervised word translation (UWT) by utilizing visual observations, which are universal representations across languages.Our work investigates the potential of using not only visual observations but also pretrained language-image models for enabling a more efficient and robust UWT. We develop a novel UWT method dubbed Word Alignment using Language-Image Pretraining (WALIP), leveraging visual observations via the shared image-text embedding space of CLIPs (Radford et al., 2021). WALIP has a two-step procedure. First, we retrieve word pairs with high confidences of similarity, computed using our proposed image-based fingerprints, which define the initial pivot for the alignment.Second, we apply our robust Procrustes algorithm to estimate the linear mapping between two embedding spaces, which iteratively corrects and refines the estimated alignment.Our extensive experiments show that WALIP improves upon the state-of-the-art performance of bilingual word alignment for a few language pairs across different word embeddings and displays great robustness to the dissimilarity of language pairs or training corpora for two word embeddings.