Jy-Yong Sohn

Also published as: Jy-yong Sohn


pdf bib
Retrieval-based Evaluation for LLMs: A Case Study in Korean Legal QA
Cheol Ryu | Seolhwa Lee | Subeen Pang | Chanyeol Choi | Hojun Choi | Myeonggee Min | Jy-Yong Sohn
Proceedings of the Natural Legal Language Processing Workshop 2023

While large language models (LLMs) have demonstrated significant capabilities in text generation, their utilization in areas requiring domain-specific expertise, such as law, must be approached cautiously. This caution is warranted due to the inherent challenges associated with LLM-generated texts, including the potential presence of factual errors. Motivated by this issue, we propose Eval-RAG, a new evaluation method for LLM-generated texts. Unlike existing methods, Eval-RAG evaluates the validity of generated texts based on the related document that are collected by the retriever. In other words, Eval-RAG adopts the idea of retrieval augmented generation (RAG) for the purpose of evaluation. Our experimental results on Korean Legal Question-Answering (QA) tasks show that conventional LLM-based evaluation methods can be better aligned with Lawyers’ evaluations, by combining with Eval-RAG. In addition, our qualitative analysis show that Eval-RAG successfully finds the factual errors in LLM-generated texts, while existing evaluation methods cannot.


pdf bib
Utilizing Language-Image Pretraining for Efficient and Robust Bilingual Word Alignment
Tuan Dinh | Jy-yong Sohn | Shashank Rajput | Timothy Ossowski | Yifei Ming | Junjie Hu | Dimitris Papailiopoulos | Kangwook Lee
Findings of the Association for Computational Linguistics: EMNLP 2022

Word translation without parallel corpora has become feasible, rivaling the performance of supervised methods. Recent findings have shown the improvement in accuracy and robustness of unsupervised word translation (UWT) by utilizing visual observations, which are universal representations across languages. Our work investigates the potential of using not only visual observations but also pretrained language-image models for enabling a more efficient and robust UWT. We develop a novel UWT method dubbed Word Alignment using Language-Image Pretraining (WALIP), leveraging visual observations via the shared image-text embedding space of CLIPs (Radford et al., 2021). WALIP has a two-step procedure. First, we retrieve word pairs with high confidences of similarity, computed using our proposed image-based fingerprints, which define the initial pivot for the alignment. Second, we apply our robust Procrustes algorithm to estimate the linear mapping between two embedding spaces, which iteratively corrects and refines the estimated alignment. Our extensive experiments show that WALIP improves upon the state-of-the-art performance of bilingual word alignment for a few language pairs across different word embeddings and displays great robustness to the dissimilarity of language pairs or training corpora for two word embeddings.