Joohyung Yun


2025

pdf bib
HELIOS: Harmonizing Early Fusion, Late Fusion, and LLM Reasoning for Multi-Granular Table-Text Retrieval
Sungho Park | Joohyung Yun | Jongwuk Lee | Wook-Shin Han
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Table-text retrieval aims to retrieve relevant tables and text to support open-domain question answering. Existing studies use either early or late fusion, but face limitations. Early fusion pre-aligns a table row with its associated passages, forming “stars,” which often include irrelevant contexts and miss query-dependent relationships. Late fusion retrieves individual nodes, dynamically aligning them, but it risks missing relevant contexts. Both approaches also struggle with advanced reasoning tasks, such as column-wise aggregation and multi-hop reasoning. To address these issues, we propose HELIOS, which combines the strengths of both approaches. First, the edge-based bipartite subgraph retrieval identifies finer-grained edges between table segments and passages, effectively avoiding the inclusion of irrelevant contexts. Then, the query-relevant node expansion identifies the most promising nodes, dynamically retrieving relevant edges to grow the bipartite subgraph, minimizing the risk of missing important contexts. Lastly, the star-based LLM refinement performs logical inference at the star graph level rather than the bipartite subgraph, supporting advanced reasoning tasks. Experimental results show that HELIOS outperforms state-of-the-art models with a significant improvement up to 42.6% and 39.9% in recall and nDCG, respectively, on the OTT-QA benchmark.

pdf bib
LILaC: Late Interacting in Layered Component Graph for Open-domain Multimodal Multihop Retrieval
Joohyung Yun | Doyup Lee | Wook-Shin Han
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Multimodal document retrieval aims to retrieve query-relevant components from documents composed of textual, tabular, and visual elements. An effective multimodal retriever needs to handle two main challenges: (1) mitigate the effect of irrelevant contents caused by fixed, single-granular retrieval units, and (2) support multihop reasoning by effectively capturing semantic relationships among components within and across documents. To address these challenges, we propose LILaC, a multimodal retrieval framework featuring two core innovations. First, we introduce a layered component graph, explicitly representing multimodal information at two layers—each representing coarse and fine granularity—facilitating efficient yet precise reasoning. Second, we develop a late-interaction-based subgraph retrieval method, an edge-based approach that initially identifies coarse-grained nodes for efficient candidate generation, then performs fine-grained reasoning via late interaction. Extensive experiments demonstrate that LILaC achieves state-of-the-art retrieval performance on all five benchmarks, notably without additional fine-tuning. We make the artifacts publicly available at github.com/joohyung00/lilac.