Kai Chen


pdf bib
RankCSE: Unsupervised Sentence Representations Learning via Learning to Rank
Jiduan Liu | Jiahao Liu | Qifan Wang | Jingang Wang | Wei Wu | Yunsen Xian | Dongyan Zhao | Kai Chen | Rui Yan
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Unsupervised sentence representation learning is one of the fundamental problems in natural language processing with various downstream applications. Recently, contrastive learning has been widely adopted which derives high-quality sentence representations by pulling similar semantics closer and pushing dissimilar ones away. However, these methods fail to capture the fine-grained ranking information among the sentences, where each sentence is only treated as either positive or negative. In many real-world scenarios, one needs to distinguish and rank the sentences based on their similarities to a query sentence, e.g., very relevant, moderate relevant, less relevant, irrelevant, etc. In this paper, we propose a novel approach, RankCSE, for unsupervised sentence representation learning, which incorporates ranking consistency and ranking distillation with contrastive learning into a unified framework. In particular, we learn semantically discriminative sentence representations by simultaneously ensuring ranking consistency between two representations with different dropout masks, and distilling listwise ranking knowledge from the teacher. An extensive set of experiments are conducted on both semantic textual similarity (STS) and transfer (TR) tasks. Experimental results demonstrate the superior performance of our approach over several state-of-the-art baselines.


pdf bib
RotateQVS: Representing Temporal Information as Rotations in Quaternion Vector Space for Temporal Knowledge Graph Completion
Kai Chen | Ye Wang | Yitong Li | Aiping Li
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Temporal factors are tied to the growth of facts in realistic applications, such as the progress of diseases and the development of political situation, therefore, research on Temporal Knowledge Graph (TKG) attracks much attention. In TKG, relation patterns inherent with temporality are required to be studied for representation learning and reasoning across temporal facts. However, existing methods can hardly model temporal relation patterns, nor can capture the intrinsic connections between relations when evolving over time, lacking of interpretability. In this paper, we propose a novel temporal modeling method which represents temporal entities as Rotations in Quaternion Vector Space (RotateQVS) and relations as complex vectors in Hamilton’s quaternion space. We demonstrate our method can model key patterns of relations in TKG, such as symmetry, asymmetry, inverse, and can capture time-evolved relations by theory. And empirically, we show that our method can boost the performance of link prediction tasks over four temporal knowledge graph benchmarks.

pdf bib
SMASH: Improving SMAll Language Models’ Few-SHot Ability with Prompt-Based Distillation
Yueqian Wang | Chang Liu | Kai Chen | Xi Wang | Dongyan Zhao
Findings of the Association for Computational Linguistics: EMNLP 2022

Large-scale language models coupled with prompts have shown remarkable performance on few-shot learning. However, through systematic experiments, we find that the few-shot performance of small language models is poor, and using prompts on them brings fewer improvements than on larger ones. In this paper, we propose SMASH, an approach to improve SMAll language models’ few-SHot ability by training on intermediate tasks before prompt-based fine-tuning on downstream tasks. We design intermediate tasks for sentence-pair tasks and sentiment classification tasks by creating training examples with prompt templates similar to downstream tasks using sentences sampled from a large-scale unsupervised corpus, and apply knowledge distillation to distill from outputs of larger pre-trained models as the training objective. We conduct extensive experiments and show that SMASH can make a 6-layer DistilRoBRETa-base achieve comparable performance on few-shot datasets with a 12-layer RoBERTa-base at a low cost.


pdf bib
Extracting Symptoms and their Status from Clinical Conversations
Nan Du | Kai Chen | Anjuli Kannan | Linh Tran | Yuhui Chen | Izhak Shafran
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

This paper describes novel models tailored for a new application, that of extracting the symptoms mentioned in clinical conversations along with their status. Lack of any publicly available corpus in this privacy-sensitive domain led us to develop our own corpus, consisting of about 3K conversations annotated by professional medical scribes. We propose two novel deep learning approaches to infer the symptom names and their status: (1) a new hierarchical span-attribute tagging (SA-T) model, trained using curriculum learning, and (2) a variant of sequence-to-sequence model which decodes the symptoms and their status from a few speaker turns within a sliding window over the conversation. This task stems from a realistic application of assisting medical providers in capturing symptoms mentioned by patients from their clinical conversations. To reflect this application, we define multiple metrics. From inter-rater agreement, we find that the task is inherently difficult. We conduct comprehensive evaluations on several contrasting conditions and observe that the performance of the models range from an F-score of 0.5 to 0.8 depending on the condition. Our analysis not only reveals the inherent challenges of the task, but also provides useful directions to improve the models.