Kai Ding


2024

pdf bib
TongGu: Mastering Classical Chinese Understanding with Knowledge-Grounded Large Language Models
Jiahuan Cao | Dezhi Peng | Peirong Zhang | Yongxin Shi | Yang Liu | Kai Ding | Lianwen Jin
Findings of the Association for Computational Linguistics: EMNLP 2024

Classical Chinese is a gateway to the rich heritage and wisdom of ancient China, yet its complexities pose formidable comprehension barriers for most modern people without specialized knowledge. While Large Language Models (LLMs) have shown remarkable capabilities in Natural Language Processing (NLP), they struggle with Classical Chinese Understanding (CCU), especially in data-demanding and knowledge-intensive tasks. In response to this dilemma, we propose TongGu (mean understanding ancient and modern), the first CCU-specific LLM, underpinned by three core contributions. First, we construct a two-stage instruction-tuning dataset ACCN-INS derived from rich classical Chinese corpora, aiming to unlock the full CCU potential of LLMs. Second, we propose Redundancy-Aware Tuning (RAT) to prevent catastrophic forgetting, enabling TongGu to acquire new capabilities while preserving its foundational knowledge. Third, we present a CCU Retrieval-Augmented Generation (CCU-RAG) technique to reduce hallucinations based on knowledge-grounding. Extensive experiments across 24 diverse CCU tasks validate TongGu’s superior ability, underscoring the effectiveness of RAT and CCU-RAG. The model and dataset are available at https://github.com/SCUT-DLVCLab/TongGu-LLM.

pdf bib
Scaling Laws for Fact Memorization of Large Language Models
Xingyu Lu | Xiaonan Li | Qinyuan Cheng | Kai Ding | Xuanjing Huang | Xipeng Qiu
Findings of the Association for Computational Linguistics: EMNLP 2024

Fact knowledge memorization is crucial for Large Language Models (LLM) to generate factual and reliable responses. However, the behaviors of LLM fact memorization remain under-explored. In this paper, we analyze the scaling laws for LLM’s fact knowledge and LLMs’ behaviors of memorizing different types of facts. We find that LLMs’ fact knowledge capacity has a linear and negative exponential law relationship with model size and training epochs, respectively. Estimated by the built scaling law, memorizing the whole Wikidata’s facts requires training an LLM with 1000B non-embed parameters for 100 epochs, suggesting that using LLMs to memorize all public facts is almost implausible for a general pre-training setting. Meanwhile, we find that LLMs can generalize on unseen fact knowledge and its scaling law is similar to general pre-training. Additionally, we analyze the compatibility and preference of LLMs’ fact memorization. For compatibility, we find LLMs struggle with memorizing redundant facts in a unified way. Only when correlated facts have the same direction and structure, the LLM can compatibly memorize them. This shows the inefficiency of LLM memorization for redundant facts. For preference, the LLM pays more attention to memorizing more frequent and difficult facts, and the subsequent facts can overwrite prior facts’ memorization, which significantly hinders low-frequency facts memorization. Our findings reveal the capacity and characteristics of LLMs’ fact knowledge learning, which provide directions for LLMs’ fact knowledge augmentation.

2022

pdf bib
LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding
Jiapeng Wang | Lianwen Jin | Kai Ding
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Structured document understanding has attracted considerable attention and made significant progress recently, owing to its crucial role in intelligent document processing. However, most existing related models can only deal with the document data of specific language(s) (typically English) included in the pre-training collection, which is extremely limited. To address this issue, we propose a simple yet effective Language-independent Layout Transformer (LiLT) for structured document understanding. LiLT can be pre-trained on the structured documents of a single language and then directly fine-tuned on other languages with the corresponding off-the-shelf monolingual/multilingual pre-trained textual models. Experimental results on eight languages have shown that LiLT can achieve competitive or even superior performance on diverse widely-used downstream benchmarks, which enables language-independent benefit from the pre-training of document layout structure. Code and model are publicly available at https://github.com/jpWang/LiLT.