Kai Xiong


2023

pdf bib
Examining Inter-Consistency of Large Language Models Collaboration: An In-depth Analysis via Debate
Kai Xiong | Xiao Ding | Yixin Cao | Ting Liu | Bing Qin
Findings of the Association for Computational Linguistics: EMNLP 2023

Large Language Models (LLMs) have shown impressive capabilities in various applications, but they still face various inconsistency issues. Existing works primarily focus on the inconsistency issues within a single LLM, while we complementarily explore the inter-consistency among multiple LLMs for collaboration. To examine whether LLMs can collaborate effectively to achieve a consensus for a shared goal, we focus on commonsense reasoning, and introduce a formal debate framework (FORD) to conduct a three-stage debate among LLMs with real-world scenarios alignment: fair debate, mismatched debate, and roundtable debate. Through extensive experiments on various datasets, LLMs can effectively collaborate to reach a consensus despite noticeable inter-inconsistencies, but imbalances in their abilities can lead to domination by superior LLMs. Leveraging a more advanced LLM like GPT-4 as an authoritative judge can boost collaboration performance. Our work contributes to understanding the inter-consistency among LLMs and lays the foundation for developing future collaboration methods. Codes and data are available at https://github.com/Waste-Wood/FORD.

2022

pdf bib
ReCo: Reliable Causal Chain Reasoning via Structural Causal Recurrent Neural Networks
Kai Xiong | Xiao Ding | Zhongyang Li | Li Du | Ting Liu | Bing Qin | Yi Zheng | Baoxing Huai
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Causal chain reasoning (CCR) is an essential ability for many decision-making AI systems, which requires the model to build reliable causal chains by connecting causal pairs. However, CCR suffers from two main transitive problems: threshold effect and scene drift. In other words, the causal pairs to be spliced may have a conflicting threshold boundary or scenario. To address these issues, we propose a novel Reliable Causal chain reasoning framework (ReCo), which introduces exogenous variables to represent the threshold and scene factors of each causal pair within the causal chain, and estimates the threshold and scene contradictions across exogenous variables via structural causal recurrent neural networks (SRNN). Experiments show that ReCo outperforms a series of strong baselines on both Chinese and English CCR datasets. Moreover, by injecting reliable causal chain knowledge distilled by ReCo, BERT can achieve better performances on four downstream causal-related tasks than BERT models enhanced by other kinds of knowledge.

pdf bib
e-CARE: a New Dataset for Exploring Explainable Causal Reasoning
Li Du | Xiao Ding | Kai Xiong | Ting Liu | Bing Qin
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Understanding causality has vital importance for various Natural Language Processing (NLP) applications. Beyond the labeled instances, conceptual explanations of the causality can provide deep understanding of the causal fact to facilitate the causal reasoning process. However, such explanation information still remains absent in existing causal reasoning resources. In this paper, we fill this gap by presenting a human-annotated explainable CAusal REasoning dataset (e-CARE), which contains over 20K causal reasoning questions, together with natural language formed explanations of the causal questions. Experimental results show that generating valid explanations for causal facts still remains especially challenging for the state-of-the-art models, and the explanation information can be helpful for promoting the accuracy and stability of causal reasoning models.

2021

pdf bib
ExCAR: Event Graph Knowledge Enhanced Explainable Causal Reasoning
Li Du | Xiao Ding | Kai Xiong | Ting Liu | Bing Qin
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Prior work infers the causation between events mainly based on the knowledge induced from the annotated causal event pairs. However, additional evidence information intermediate to the cause and effect remains unexploited. By incorporating such information, the logical law behind the causality can be unveiled, and the interpretability and stability of the causal reasoning system can be improved. To facilitate this, we present an Event graph knowledge enhanced explainable CAusal Reasoning framework (ExCAR). ExCAR first acquires additional evidence information from a large-scale causal event graph as logical rules for causal reasoning. To learn the conditional probabilistic of logical rules, we propose the Conditional Markov Neural Logic Network (CMNLN) that combines the representation learning and structure learning of logical rules in an end-to-end differentiable manner. Experimental results demonstrate that ExCAR outperforms previous state-of-the-art methods. Adversarial evaluation shows the improved stability of ExCAR over baseline systems. Human evaluation shows that ExCAR can achieve a promising explainable performance.