Kaige Xie


2024

pdf bib
Creating Suspenseful Stories: Iterative Planning with Large Language Models
Kaige Xie | Mark Riedl
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)

Automated story generation has been one of the long-standing challenges in NLP. Among all dimensions of stories, *suspense* is very common in human-written stories but relatively under-explored in AI-generated stories. While recent advances in large language models (LLMs) have greatly promoted language generation in general, state-of-the-art LLMs are still unreliable when it comes to suspenseful story generation. We propose a novel iterative-prompting-based planning method that is grounded in two theoretical foundations of story suspense from cognitive psychology and narratology. This theory-grounded method works in a fully zero-shot manner and does not rely on any supervised story corpora. To the best of our knowledge, this paper is the first attempt at suspenseful story generation with LLMs. Extensive human evaluations of the generated suspenseful stories demonstrate the effectiveness of our method.

pdf bib
Few-Shot Dialogue Summarization via Skeleton-Assisted Prompt Transfer in Prompt Tuning
Kaige Xie | Tong Yu | Haoliang Wang | Junda Wu | Handong Zhao | Ruiyi Zhang | Kanak Mahadik | Ani Nenkova | Mark Riedl
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)

In real-world scenarios, labeled samples for dialogue summarization are usually limited (i.e., few-shot) due to high annotation costs for high-quality dialogue summaries. To efficiently learn from few-shot samples, previous works have utilized massive annotated data from other downstream tasks and then performed prompt transfer in prompt tuning so as to enable cross-task knowledge transfer. However, existing general-purpose prompt transfer techniques lack consideration for dialogue-specific information. In this paper, we focus on improving the prompt transfer from dialogue state tracking to dialogue summarization and propose Skeleton-Assisted Prompt Transfer (SAPT), which leverages skeleton generation as extra supervision that functions as a medium connecting the distinct source and target task and resulting in the model’s better consumption of dialogue state information. To automatically extract dialogue skeletons as supervised training data for skeleton generation, we design a novel approach with perturbation-based probes requiring neither annotation effort nor domain knowledge. Training the model on such skeletons can also help preserve model capability during prompt transfer. Our method significantly outperforms existing baselines. In-depth analyses demonstrate the effectiveness of our method in facilitating cross-task knowledge transfer in few-shot dialogue summarization.

2022

pdf bib
Calibrating Trust of Multi-Hop Question Answering Systems with Decompositional Probes
Kaige Xie | Sarah Wiegreffe | Mark Riedl
Findings of the Association for Computational Linguistics: EMNLP 2022

Multi-hop Question Answering (QA) is a challenging task since it requires an accurate aggregation of information from multiple context paragraphs and a thorough understanding of the underlying reasoning chains. Recent work in multi-hop QA has shown that performance can be boosted by first decomposing the questions into simpler, single-hop questions. In this paper, we explore one additional utility of the multi-hop decomposition from the perspective of explainable NLP: to create explanation by probing a neural QA model with them. We hypothesize that in doing so, users will be better able to predict when the underlying QA system will give the correct answer. Through human participant studies, we verify that exposing the decomposition probes and answers to the probes to users can increase their ability to predict system performance on a question instance basis. We show that decomposition is an effective form of probing QA systems as well as a promising approach to explanation generation. In-depth analyses show the need for improvements in decomposition systems.

pdf bib
Guiding Neural Story Generation with Reader Models
Xiangyu Peng | Kaige Xie | Amal Alabdulkarim | Harshith Kayam | Samihan Dani | Mark Riedl
Findings of the Association for Computational Linguistics: EMNLP 2022

Automated storytelling has long captured the attention of researchers for the ubiquity of narratives in everyday life. However, it is challenging to maintain coherence and stay on-topictoward a specific ending when generating narratives with neural language models. In this paper, we introduce Story generation with ReaderModels (StoRM), a framework in which areader model is used to reason about the storyshould progress. A reader model infers whata human reader believes about the concepts,entities, and relations about the fictional storyworld. We show how an explicit reader modelrepresented as a knowledge graph affords the storycoherence and provides controllability in theform of achieving a given story world stategoal. Experiments show that our model produces significantly more coherent and on-topicstories, outperforming baselines in dimensionsincluding plot plausibility and staying on topic

2019

pdf bib
Rethinking Action Spaces for Reinforcement Learning in End-to-end Dialog Agents with Latent Variable Models
Tiancheng Zhao | Kaige Xie | Maxine Eskenazi
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Defining action spaces for conversational agents and optimizing their decision-making process with reinforcement learning is an enduring challenge. Common practice has been to use handcrafted dialog acts, or the output vocabulary, e.g. in neural encoder decoders, as the action spaces. Both have their own limitations. This paper proposes a novel latent action framework that treats the action spaces of an end-to-end dialog agent as latent variables and develops unsupervised methods in order to induce its own action space from the data. Comprehensive experiments are conducted examining both continuous and discrete action types and two different optimization methods based on stochastic variational inference. Results show that the proposed latent actions achieve superior empirical performance improvement over previous word-level policy gradient methods on both DealOrNoDeal and MultiWoz dialogs. Our detailed analysis also provides insights about various latent variable approaches for policy learning and can serve as a foundation for developing better latent actions in future research.

2018

pdf bib
Cost-Sensitive Active Learning for Dialogue State Tracking
Kaige Xie | Cheng Chang | Liliang Ren | Lu Chen | Kai Yu
Proceedings of the 19th Annual SIGdial Meeting on Discourse and Dialogue

Dialogue state tracking (DST), when formulated as a supervised learning problem, relies on labelled data. Since dialogue state annotation usually requires labelling all turns of a single dialogue and utilizing context information, it is very expensive to annotate all available unlabelled data. In this paper, a novel cost-sensitive active learning framework is proposed based on a set of new dialogue-level query strategies. This is the first attempt to apply active learning for dialogue state tracking. Experiments on DSTC2 show that active learning with mixed data query strategies can effectively achieve the same DST performance with significantly less data annotation compared to traditional training approaches.

pdf bib
Towards Universal Dialogue State Tracking
Liliang Ren | Kaige Xie | Lu Chen | Kai Yu
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Dialogue state tracker is the core part of a spoken dialogue system. It estimates the beliefs of possible user’s goals at every dialogue turn. However, for most current approaches, it’s difficult to scale to large dialogue domains. They have one or more of following limitations: (a) Some models don’t work in the situation where slot values in ontology changes dynamically; (b) The number of model parameters is proportional to the number of slots; (c) Some models extract features based on hand-crafted lexicons. To tackle these challenges, we propose StateNet, a universal dialogue state tracker. It is independent of the number of values, shares parameters across all slots, and uses pre-trained word vectors instead of explicit semantic dictionaries. Our experiments on two datasets show that our approach not only overcomes the limitations, but also significantly outperforms the performance of state-of-the-art approaches.