Kaiwen Men


2025

pdf bib
LongLeader: A Comprehensive Leaderboard for Large Language Models in Long-context Scenarios
Pei Chen | Hongye Jin | Cheng-Che Lee | Rulin Shao | Jingfeng Yang | Mingyu Zhao | Zhaoyu Zhang | Qin Lu | Kaiwen Men | Ning Xie | Huasheng Li | Bing Yin | Han Li | Lingyun Wang
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Large Language Models (LLMs), exemplified by Claude and LLama, have exhibited impressive proficiency in tackling a myriad of Natural Language Processing (NLP) tasks. Yet, in pursuit of the ambitious goal of attaining Artificial General Intelligence (AGI), there remains ample room for enhancing LLM capabilities. Chief among these is the pressing need to bolster long-context comprehension. Numerous real-world scenarios demand LLMs to adeptly reason across extended contexts, such as multi-turn dialogues or agent workflow. Hence, recent advancements have been dedicated to stretching the upper bounds of long-context comprehension, with models like Claude 3 accommodating up to 200k tokens, employing various techniques to achieve this feat. Aligned with this progression, we propose a leaderboard LongLeader that seeks to comprehensively assess different long-context comprehension abilities of diverse LLMs and context length extension strategies across meticulously selected benchmarks. Specifically, we aim to address the following questions: 1) Do LLMs genuinely deliver the long-context proficiency they purport? 2) Which benchmarks offer reliable metrics for evaluating long-context comprehension? 3) What technical strategies prove effective in extending the understanding of longer contexts? We streamline the evaluation process for LLMs on the benchmarks, offering open-source access to the benchmarks and maintaining a dedicated website for leaderboards. We will continuously curate new datasets and update models to the leaderboards.

2024

pdf bib
Revisiting Parallel Context Windows: A Frustratingly Simple Alternative and Chain-of-Thought Deterioration
Kejuan Yang | Xiao Liu | Kaiwen Men | Aohan Zeng | Yuxiao Dong | Jie Tang
Findings of the Association for Computational Linguistics: ACL 2024

We identify two crucial limitations in the evaluation of recent parallel-integrated method Parallel Context Windows (PCW), which extends the maximum context lengths of language models, e.g., 2048 for LLaMA, by harnessing window-wise attention and positional embedding techniques. We first show that a simple yet strong baseline, weighted sum ensemble, is missing for the in-context few-shot classification. Moreover, on more challenging Chain-of-Thought (CoT) reasoning (e.g., HotpotQA), PCW would present unexpected deterioration regarding question miscomprehension and false inference. Based on our findings, we suggest that the existing PCW design may not guarantee sufficient improvement and practicality in handling lengthy documents in real-world applications. More community efforts on enabling language models’ long context understanding ability should be paid.