Kaiyin Zhou


pdf bib
Table-based Fact Verification with Self-adaptive Mixture of Experts
Yuxuan Zhou | Xien Liu | Kaiyin Zhou | Ji Wu
Findings of the Association for Computational Linguistics: ACL 2022

The table-based fact verification task has recently gained widespread attention and yet remains to be a very challenging problem. It inherently requires informative reasoning over natural language together with different numerical and logical reasoning on tables (e.g., count, superlative, comparative). Considering that, we exploit mixture-of-experts and present in this paper a new method: Self-adaptive Mixture-of-Experts Network (SaMoE). Specifically, we have developed a mixture-of-experts neural network to recognize and execute different types of reasoning—the network is composed of multiple experts, each handling a specific part of the semantics for reasoning, whereas a management module is applied to decide the contribution of each expert network to the verification result. A self-adaptive method is developed to teach the management module combining results of different experts more efficiently without external knowledge. The experimental results illustrate that our framework achieves 85.1% accuracy on the benchmark dataset TabFact, comparable with the previous state-of-the-art models. We hope our framework can serve as a new baseline for table-based verification. Our code is available at https://github.com/THUMLP/SaMoE.


pdf bib
THiFly_Queens at SemEval-2021 Task 9: Two-stage Statement Verification with Adaptive Ensembling and Slot-based Operation
Yuxuan Zhou | Kaiyin Zhou | Xien Liu | Ji Wu | Xiaodan Zhu
Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)

This paper describes our system for verifying statements with tables at SemEval-2021 Task 9. We developed a two-stage verifying system based on the latest table-based pre-trained model GraPPa. Multiple networks are devised to verify different types of statements in the competition dataset and an adaptive model ensembling technique is applied to ensemble models in both stages. A statement-slot-based symbolic operation module is also used in our system to further improve the performance and stability of the system. Our model achieves second place in the 3-way classification and fourth place in the 2-way classification evaluation. Several ablation experiments show the effectiveness of different modules proposed in this paper.


pdf bib
An Overview of the Active Gene Annotation Corpus and the BioNLP OST 2019 AGAC Track Tasks
Yuxing Wang | Kaiyin Zhou | Mina Gachloo | Jingbo Xia
Proceedings of The 5th Workshop on BioNLP Open Shared Tasks

The active gene annotation corpus (AGAC) was developed to support knowledge discovery for drug repurposing. Based on the corpus, the AGAC track of the BioNLP Open Shared Tasks 2019 was organized, to facilitate cross-disciplinary collaboration across BioNLP and Pharmacoinformatics communities, for drug repurposing. The AGAC track consists of three subtasks: 1) named entity recognition, 2) thematic relation extraction, and 3) loss of function (LOF) / gain of function (GOF) topic classification. The AGAC track was participated by five teams, of which the performance are compared and analyzed. The the results revealed a substantial room for improvement in the design of the task, which we analyzed in terms of “imbalanced data”, “selective annotation” and “latent topic annotation”.


pdf bib
CRF-LSTM Text Mining Method Unveiling the Pharmacological Mechanism of Off-target Side Effect of Anti-Multiple Myeloma Drugs
Kaiyin Zhou | Sheng Zhang | Xiangyu Meng | Qi Luo | Yuxing Wang | Ke Ding | Yukun Feng | Mo Chen | Kevin Cohen | Jingbo Xia
Proceedings of the BioNLP 2018 workshop

Sequence labeling of biomedical entities, e.g., side effects or phenotypes, was a long-term task in BioNLP and MedNLP communities. Thanks to effects made among these communities, adverse reaction NER has developed dramatically in recent years. As an illuminative application, to achieve knowledge discovery via the combination of the text mining result and bioinformatics idea shed lights on the pharmacological mechanism research.