Kalyani Roy


2023

pdf bib
A Simple yet Efficient Ensemble Approach for AI-generated Text Detection
Harika Abburi | Kalyani Roy | Michael Suesserman | Nirmala Pudota | Balaji Veeramani | Edward Bowen | Sanmitra Bhattacharya
Proceedings of the Third Workshop on Natural Language Generation, Evaluation, and Metrics (GEM)

Recent Large Language Models (LLMs) have demonstrated remarkable capabilities in generating text that closely resembles human writing across wide range of styles and genres. However, such capabilities are prone to potential abuse, such as fake news generation, spam email creation, and misuse in academic assignments. Hence, it is essential to build automated approaches capable of distinguishing between artificially generated text and human-authored text. In this paper, we propose a simple yet efficient solution to this problem by ensembling predictions from multiple constituent LLMs. Compared to previous state-of-the-art approaches, which are perplexity-based or uses ensembles with a large number of LLMs, our condensed ensembling approach uses only two constituent LLMs to achieve comparable performance. Experiments conducted on four benchmark datasets for generative text classification show performance improvements in the range of 0.5 to 100% compared to previous state-of-the-art approaches. We also study that the influence the training data from individual LLMs have on model performance. We found that substituting commercially-restrictive Generative Pre-trained Transformer (GPT) data with data generated from other open language models such as Falcon, Large Language Model Meta AI (LLaMA2), and Mosaic Pretrained Transformers (MPT) is a feasible alternative when developing generative text detectors. Furthermore, to demonstrate zero-shot generalization, we experimented with an English essays dataset, and results suggest that our ensembling approach can handle new data effectively.

2022

pdf bib
Investigating the Generative Approach for Question Answering in E-Commerce
Kalyani Roy | Vineeth Balapanuru | Tapas Nayak | Pawan Goyal
Proceedings of the Fifth Workshop on e-Commerce and NLP (ECNLP 5)

Many e-commerce websites provide Product-related Question Answering (PQA) platform where potential customers can ask questions related to a product, and other consumers can post an answer to that question based on their experience. Recently, there has been a growing interest in providing automated responses to product questions. In this paper, we investigate the suitability of the generative approach for PQA. We use state-of-the-art generative models proposed by Deng et al.(2020) and Lu et al.(2020) for this purpose. On closer examination, we find several drawbacks in this approach: (1) input reviews are not always utilized significantly for answer generation, (2) the performance of the models is abysmal while answering the numerical questions, (3) many of the generated answers contain phrases like “I do not know” which are taken from the reference answer in training data, and these answers do not convey any information to the customer. Although these approaches achieve a high ROUGE score, it does not reflect upon these shortcomings of the generated answers. We hope that our analysis will lead to more rigorous PQA approaches, and future research will focus on addressing these shortcomings in PQA.

2021

pdf bib
Attribute Value Generation from Product Title using Language Models
Kalyani Roy | Pawan Goyal | Manish Pandey
Proceedings of the 4th Workshop on e-Commerce and NLP

Identifying the value of product attribute is essential for many e-commerce functions such as product search and product recommendations. Therefore, identifying attribute values from unstructured product descriptions is a critical undertaking for any e-commerce retailer. What makes this problem challenging is the diversity of product types and their attributes and values. Existing methods have typically employed multiple types of machine learning models, each of which handles specific product types or attribute classes. This has limited their scalability and generalization for large scale real world e-commerce applications. Previous approaches for this task have formulated the attribute value extraction as a Named Entity Recognition (NER) task or a Question Answering (QA) task. In this paper we have presented a generative approach to the attribute value extraction problem using language models. We leverage the large-scale pretraining of the GPT-2 and the T5 text-to-text transformer to create fine-tuned models that can effectively perform this task. We show that a single general model is very effective for this task over a broad set of product attribute values with the open world assumption. Our approach achieves state-of-the-art performance for different attribute classes, which has previously required a diverse set of models.

2020

pdf bib
Using Large Pretrained Language Models for Answering User Queries from Product Specifications
Kalyani Roy | Smit Shah | Nithish Pai | Jaidam Ramtej | Prajit Nadkarni | Jyotirmoy Banerjee | Pawan Goyal | Surender Kumar
Proceedings of the 3rd Workshop on e-Commerce and NLP

While buying a product from the e-commerce websites, customers generally have a plethora of questions. From the perspective of both the e-commerce service provider as well as the customers, there must be an effective question answering system to provide immediate answer to the user queries. While certain questions can only be answered after using the product, there are many questions which can be answered from the product specification itself. Our work takes a first step in this direction by finding out the relevant product specifications, that can help answering the user questions. We propose an approach to automatically create a training dataset for this problem. We utilize recently proposed XLNet and BERT architectures for this problem and find that they provide much better performance than the Siamese model, previously applied for this problem. Our model gives a good performance even when trained on one vertical and tested across different verticals.