Kangda Wei


2023

pdf bib
Leveraging Multiple Teachers for Test-Time Adaptation of Language-Guided Classifiers
Kangda Wei | Sayan Ghosh | Rakesh Menon | Shashank Srivastava
Findings of the Association for Computational Linguistics: EMNLP 2023

Recent approaches have explored language- guided classifiers capable of classifying examples from novel tasks when provided with task-specific natural language explanations, instructions or prompts (Sanh et al., 2022; R. Menon et al., 2022). While these classifiers can generalize in zero-shot settings, their task performance often varies substantially between different language explanations in unpredictable ways (Lu et al., 2022; Gonen et al., 2022). Also, current approaches fail to leverage unlabeled examples that may be available in many scenarios. Here, we introduce TALC, a framework that uses data programming to adapt a language-guided classifier for a new task during inference when provided with explanations from multiple teachers and unlabeled test examples. Our results show that TALC consistently outperforms a competitive baseline from prior work by an impressive 9.3% (relative improvement). Further, we demonstrate the robustness of TALC to variations in the quality and quantity of provided explanations, highlighting its potential in scenarios where learning from multiple teachers or a crowd is involved. Our code is available at: https://github.com/WeiKangda/TALC.git.

pdf bib
When Do Decompositions Help for Machine Reading?
Kangda Wei | Dawn Lawrie | Benjamin Van Durme | Yunmo Chen | Orion Weller
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Answering complex questions often requires multi-step reasoning in order to obtain the final answer. Most research into decompositions of complex questions involves open-domain systems, which have shown success in using these decompositions for improved retrieval. In the machine reading setting, however, work to understand when decompositions are helpful is understudied. We conduct experiments on decompositions in machine reading to unify recent work in this space, using a range of models and datasets. We find that decompositions can be helpful in zero or limited-data settings, giving several points of improvement in exact match. However, we also show that when models are given access to around a few hundred or more examples, decompositions are not helpful (and can actually be detrimental). Thus, our analysis implies that models can learn decompositions implicitly even with limited data.

2022

pdf bib
Compositional Generalization for Kinship Prediction through Data Augmentation
Kangda Wei | Sayan Ghosh | Shashank Srivastava
Proceedings of the 4th Workshop of Narrative Understanding (WNU2022)

Transformer-based models have shown promising performance in numerous NLP tasks. However, recent work has shown the limitation of such models in showing compositional generalization, which requires models to generalize to novel compositions of known concepts. In this work, we explore two strategies for compositional generalization on the task of kinship prediction from stories, (1) data augmentation and (2) predicting and using intermediate structured representation (in form of kinship graphs). Our experiments show that data augmentation boosts generalization performance by around 20% on average relative to a baseline model from prior work not using these strategies. However, predicting and using intermediate kinship graphs leads to a deterioration in the generalization of kinship prediction by around 50% on average relative to models that only leverage data augmentation.