Karanpreet Singh


2023

pdf bib
IIC_Team@Multimodal Hate Speech Event Detection 2023: Detection of Hate Speech and Targets using Xlm-Roberta-base
Karanpreet Singh | Vajratiya Vajrobol | Nitisha Aggarwal
Proceedings of the 6th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text

Hate speech has emerged as a pressing issue on social media platforms, fueled by the increasing availability of multimodal data and easy internet access. Addressing this problem requires collaborative efforts from researchers, policymakers, and online platforms. In this study, we investigate the detection of hate speech in multimodal data, comprising text-embedded images, by employing advanced deep learning models. The main objective is to identify effective strategies for hate speech detection and content moderation. We conducted experiments using four state-of-the-art classifiers: XLM-Roberta-base, BiLSTM, XLNet base cased, and ALBERT, on the CrisisHateMM[4] dataset, consisting of over 4700 text-embedded images related to the Russia-Ukraine conflict. The best findings reveal that XLM-Roberta-base exhibits superior performance, outperforming other classifiers across all evaluation metrics, including an impressive F1 score of 84.62 for sub-task 1 and 69.73 for sub-task 2. The future scope of this study lies in exploring multimodal approaches to enhance hate speech detection accuracy, integrating ethical considerations to address potential biases, promoting fairness, and safeguarding user rights. Additionally, leveraging larger and more diverse datasets will contribute to developing more robust and generalised hate speech detection solutions.

pdf bib
iicteam@LT-EDI-2023: Leveraging pre-trained Transformers for Fine-Grained Depression Level Detection in Social Media
Vajratiya Vajrobol | Nitisha Aggarwal | Karanpreet Singh
Proceedings of the Third Workshop on Language Technology for Equality, Diversity and Inclusion

Depression is a prevalent mental illness characterized by feelings of sadness and a lack of interest in daily activities. Early detection of depression is crucial to prevent severe consequences, making it essential to observe and treat the condition at its onset. At ACL-2022, the DepSign-LT-EDI project aimed to identify signs of depression in individuals based on their social media posts, where people often share their emotions and feelings. Using social media postings in English, the system categorized depression signs into three labels: “not depressed,” “moderately depressed,” and “severely depressed.” To achieve this, our team has applied MentalRoBERTa, a model trained on big data of mental health. The test results indicated a macro F1-score of 0.439, ranking the fourth in the shared task.