Kartik Talamadupula


2021

pdf bib
Looking Beyond Sentence-Level Natural Language Inference for Question Answering and Text Summarization
Anshuman Mishra | Dhruvesh Patel | Aparna Vijayakumar | Xiang Lorraine Li | Pavan Kapanipathi | Kartik Talamadupula
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Natural Language Inference (NLI) has garnered significant attention in recent years; however, the promise of applying NLI breakthroughs to other downstream NLP tasks has remained unfulfilled. In this work, we use the multiple-choice reading comprehension (MCRC) and checking factual correctness of textual summarization (CFCS) tasks to investigate potential reasons for this. Our findings show that: (1) the relatively shorter length of premises in traditional NLI datasets is the primary challenge prohibiting usage in downstream applications (which do better with longer contexts); (2) this challenge can be addressed by automatically converting resource-rich reading comprehension datasets into longer-premise NLI datasets; and (3) models trained on the converted, longer-premise datasets outperform those trained using short-premise traditional NLI datasets on downstream tasks primarily due to the difference in premise lengths.

pdf bib
Efficient Text-based Reinforcement Learning by Jointly Leveraging State and Commonsense Graph Representations
Keerthiram Murugesan | Mattia Atzeni | Pavan Kapanipathi | Kartik Talamadupula | Mrinmaya Sachan | Murray Campbell
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

Text-based games (TBGs) have emerged as useful benchmarks for evaluating progress at the intersection of grounded language understanding and reinforcement learning (RL). Recent work has proposed the use of external knowledge to improve the efficiency of RL agents for TBGs. In this paper, we posit that to act efficiently in TBGs, an agent must be able to track the state of the game while retrieving and using relevant commonsense knowledge. Thus, we propose an agent for TBGs that induces a graph representation of the game state and jointly grounds it with a graph of commonsense knowledge from ConceptNet. This combination is achieved through bidirectional knowledge graph attention between the two symbolic representations. We show that agents that incorporate commonsense into the game state graph outperform baseline agents.

2020

pdf bib
Bootstrapped Q-learning with Context Relevant Observation Pruning to Generalize in Text-based Games
Subhajit Chaudhury | Daiki Kimura | Kartik Talamadupula | Michiaki Tatsubori | Asim Munawar | Ryuki Tachibana
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

We show that Reinforcement Learning (RL) methods for solving Text-Based Games (TBGs) often fail to generalize on unseen games, especially in small data regimes. To address this issue, we propose Context Relevant Episodic State Truncation (CREST) for irrelevant token removal in observation text for improved generalization. Our method first trains a base model using Q-learning, which typically overfits the training games. The base model’s action token distribution is used to perform observation pruning that removes irrelevant tokens. A second bootstrapped model is then retrained on the pruned observation text. Our bootstrapped agent shows improved generalization in solving unseen TextWorld games, using 10x-20x fewer training games compared to previous state-of-the-art (SOTA) methods despite requiring fewer number of training episodes.

pdf bib
Reading Comprehension as Natural Language Inference:A Semantic Analysis
Anshuman Mishra | Dhruvesh Patel | Aparna Vijayakumar | Xiang Li | Pavan Kapanipathi | Kartik Talamadupula
Proceedings of the Ninth Joint Conference on Lexical and Computational Semantics

In the recent past, Natural language Inference (NLI) has gained significant attention, particularly given its promise for downstream NLP tasks. However, its true impact is limited and has not been well studied. Therefore, in this paper, we explore the utility of NLI for one of the most prominent downstream tasks, viz. Question Answering (QA). We transform one of the largest available MRC dataset (RACE) to an NLI form, and compare the performances of a state-of-the-art model (RoBERTa) on both these forms. We propose new characterizations of questions, and evaluate the performance of QA and NLI models on these categories. We highlight clear categories for which the model is able to perform better when the data is presented in a coherent entailment form, and a structured question-answer concatenation form, respectively.

2018

pdf bib
A Systematic Classification of Knowledge, Reasoning, and Context within the ARC Dataset
Michael Boratko | Harshit Padigela | Divyendra Mikkilineni | Pritish Yuvraj | Rajarshi Das | Andrew McCallum | Maria Chang | Achille Fokoue-Nkoutche | Pavan Kapanipathi | Nicholas Mattei | Ryan Musa | Kartik Talamadupula | Michael Witbrock
Proceedings of the Workshop on Machine Reading for Question Answering

The recent work of Clark et al. (2018) introduces the AI2 Reasoning Challenge (ARC) and the associated ARC dataset that partitions open domain, complex science questions into easy and challenge sets. That paper includes an analysis of 100 questions with respect to the types of knowledge and reasoning required to answer them; however, it does not include clear definitions of these types, nor does it offer information about the quality of the labels. We propose a comprehensive set of definitions of knowledge and reasoning types necessary for answering the questions in the ARC dataset. Using ten annotators and a sophisticated annotation interface, we analyze the distribution of labels across the challenge set and statistics related to them. Additionally, we demonstrate that although naive information retrieval methods return sentences that are irrelevant to answering the query, sufficient supporting text is often present in the (ARC) corpus. Evaluating with human-selected relevant sentences improves the performance of a neural machine comprehension model by 42 points.

pdf bib
An Interface for Annotating Science Questions
Michael Boratko | Harshit Padigela | Divyendra Mikkilineni | Pritish Yuvraj | Rajarshi Das | Andrew McCallum | Maria Chang | Achille Fokoue | Pavan Kapanipathi | Nicholas Mattei | Ryan Musa | Kartik Talamadupula | Michael Witbrock
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

Recent work introduces the AI2 Reasoning Challenge (ARC) and the associated ARC dataset that partitions open domain, complex science questions into an Easy Set and a Challenge Set. That work includes an analysis of 100 questions with respect to the types of knowledge and reasoning required to answer them. However, it does not include clear definitions of these types, nor does it offer information about the quality of the labels or the annotation process used. In this paper, we introduce a novel interface for human annotation of science question-answer pairs with their respective knowledge and reasoning types, in order that the classification of new questions may be improved. We build on the classification schema proposed by prior work on the ARC dataset, and evaluate the effectiveness of our interface with a preliminary study involving 10 participants.